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ABSTRACT 

In this thesis, an autonomous feature extraction algorithm for classification of 

Low Probability of Intercept (LPI) radar modulations is investigated. A software 

engineering architecture that allows a full investigation of various preprocessing 

algorithms and classification techniques is applied to a database of important LPI radar 

waveform modulations including Frequency Modulation Continuous Waveform 

(FMCW), Phase Shift Keying (PSK), Frequency Shift Keying (FSK) and combined PSK 

and FSK. The architecture uses time-frequency detection techniques to identify the 

parameters of the modulation. These include the Wigner-Ville distribution, the Choi-

Williams distribution and quadrature mirror filtering. Autonomous time-frequency image 

cropping algorithm is followed by a feature extraction algorithm based on principal 

components analysis. Classification networks include the multilayer perceptron, the 

radial basis function and the probabilistic neural networks. Lastly, using image 

processing techniques on images obtained by the Wigner-Ville distribution and the Choi-

Williams distribution, two autonomous extraction algorithms are investigated to derive 

the significant modulation parameters of polyphase coded LPI radar waveform 

modulations.  
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EXECUTIVE SUMMARY 

With the development of advanced electronic support (ES) receivers, radar 

warning receivers and electronic attack systems such as anti radiation missiles, the threat 

against high power pulsed radar systems has increased. The interception of radar 

transmissions may lead to significant vulnerability. To be able to survive and operate 

effectively, the radar systems need to deny signal interception and be invisible. 

Invisibility is the property of a radar which allows for it to see but not be seen. These 

radar systems are said to have low probability of intercept and are called LPI radar 

systems. 

Modern intercept receivers must perform their tasks across a broad band and 

provide non-coherent integration capabilities. The intercept receiver can increase its 

processing gain by implementing time-frequency (T-F) detection techniques. T-F output 

images can provide detection and classification of frequency- and phase-modulated LPI 

modulations. The need for human interpretation of the T-F results however limits these 

techniques to non-real time electronic intelligence receivers. 

Autonomous detection and classification of LPI modulations can eliminate the 

need for a human operator and enable near real-time coherent handling of the threat 

emitters being intercepted. Parameter extraction followed by correlation with existing 

emitters in a database (identification) can then aid in signal tracking and response 

management.  

This thesis examines a pattern recognition technique for autonomous 

classification and parameter extraction of various LPI signal modulations. After a brief 

description of LPI radar properties, twelve LPI modulation techniques used in this thesis 

are described. The techniques include Frequency Modulation Continuous Wave 

(FMCW), Phase Shift Keying PSK (polyphase (Frank, P1, P2, P3, P4) and polytime (T1, 

T2, T3, T4) codes) and Frequency Shift Keying FSK (Costas, FSK/PSK codes). 

A diverse database is developed that consists of twelve LPI modulation 

techniques each having 21 SNR levels (-10dB, -9dB… 9dB, 10dB). Two groups of 
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parameters are used for testing purposes. The first group of parameters (Data Group-1) is 

used for the testing of the effects of noise variations on the detection and classification 

algorithm and this test is referred to as Test SNR. There are 21 folders in Data Group-1, 

each one has a different SNR level. The training signals consist of 50 signals with SNR 

of 10 dB from the Data Group-1 with the same parameters. The second group (Data 

Group-2) of parameters is different from the parameters of training signals. Data Group-2 

is used to test the detection and classification algorithms with different modulations and 

SNR levels where this test is referred to as Test Modulation. This is a potentially hard 

problem since the carrier cycles per subcode and modulation periods are different. There 

are also 21 folders in this group each with a different SNR level. Both training and testing 

signals consist of two carrier frequencies.  

The detection techniques examined include the use of the T-F techniques. These 

include Wigner-Ville distribution (WVD), the Choi-Williams distribution (CWD) and a 

Quadrature Mirror Filter Bank (QMFB). The detection techniques provide an image 

output. The WVD is computed by correlating the signal with a time and frequency 

translated version of itself. The CWD simultaneously gives the representation of a signal 

in both time and frequency. This distribution is a bilinear time-frequency analysis 

techniques for signal processing. A QMFB tree consists of a number of layers of fully 

connected pairs of orthogonal wavelet filters (or basis functions) that linearly decompose 

the received waveform into tiles on the time-frequency plane. 

Following the generation of T-F images a feature vector is generated by 

autonomously isolating and cropping the modulation energy from T-F images. First 2-D 

FFT of the images is taken and frequency domain low pass filter is applied to the 

transformed images. After the filtering, autonomous modulation energy cropping is 

performed using an adaptive threshold based on the marginal frequency distribution of 

the filtered images. Then the feature vectors are generated by resizing the new images 

and stacking the columns of the images onto each other.  

The feature vectors are transformed into a lower dimensional feature space using 

the PCA prior to the classification networks. This is accomplished by first, generating the 

training matrix by stacking the feature vectors next to each other. Second, PCA is applied 
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to the training matrix where a projection matrix is obtained. Using this projection matrix 

the testing signals are also transformed into the lower dimensional feature space 

preserving their discriminating features. The dimension reduction of feature vectors 

prevents the classifiers to be overwhelmed by the complexity of high dimensional feature 

vectors. 

Once the lower dimensional feature vectors are found, they are sent to the non-

linear classifiers for classification. Non-linear classification techniques presented include 

the multi layer perceptron (MLP), radial basis function (RBF) and probabilistic neural 

networks (PNN). The MLP is a feed-forward interconnection of individual non-linear 

parallel computing units called neurons. In an MLP network the inputs propagate through 

the network in a forward direction, on a layer by layer basis. Global training of the MLP 

results in a non-linear mapping of the inputs at the output layer. Radial basis functions 

(RBFs) consist of three layer of nodes: the input layer where the inputs are applied, the 

output layer where the outputs are produced, and a hidden layer where the RBFs are 

applied to the input data. The argument of the activation function of each hidden unit 

computes the Euclidean norm (distance) between the input vector and the center of the 

unit. Using exponentially decaying localized nonlinearities, RBFs construct local 

approximations to nonlinear input-output mappings. PNN is a variant of the RBF 

network. 

Before the classification tests are run, the best feature extraction and network 

parameters need to be determined. This is done by some iterative optimizations. After 

optimization is completed the final parameters are set and the classification tests are run.  

Concerning the Test Modulation results, the best overall classification result is 

achieved with WVD technique. CWD results were very similar to WVD results. The 

QMFB technique on the other hand performed very poorly. The Test SNR results were 

very promising indicating that the autonomous modulation energy isolation and cropping 

performed well. Concerning the classifier performances, the PNN outperformed the 

RBFNN and MLPNN. The PNN and the RBFNN also outperformed the MLPNN 

concerning the training and classification speed.  
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The classification results of polyphase modulations (Frank, P1, P2, P3 and P4) 

were poor. The architecture could not perform to distinguish between polyphase 

modulations successfully. On the other hand the best results were obtained in the 

classification of the FMCW, Costas, FSK/PSK, P2 and T4 modulations. These 

modulations have distinctive T-F images which makes the classification process simpler.  

Following the detection and classification algorithm two parameter extraction 

algorithms were investigated. First one was designed to extract the parameters from the 

PWVD images of polyphase coded LPI signals (Frank, P1, P2, P3, P4) based on the 

Radon transform of the PWVD images. The second algorithm was designed to extract the 

parameters from the CWD images of polyphase coded LPI signals (Frank, P1, P2, P3, P4) 

using frequency domain lowpass filter on the 2-D FFT of CWD images.  

The test results obtained from both algorithms tend to coincide well with the 

actual values and the relative error depends on how closely results are examined. At 

3dBSNR  the PWVD parameter extraction algorithm gave erroneous results, while 

the CWD parameter extraction algorithm still gave reasonable results. The PWVD 

parameter extraction algorithm performs without being affected from the cross terms 

present within the PWVD images. 
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I. INTRODUCTION 

A. LOW PROBABILITY OF INTERCEPT RADAR 

With the development of advanced electronic support (ES) receivers, radar 

warning receivers and electronic attack systems such as anti radiation missiles the threat 

against high power pulsed radar systems has increased. The interception of radar 

transmissions may lead to significant vulnerability. To be able to survive and operate 

effectively, the radar systems need to deny signal interception and be invisible. 

Invisibility is the property of a radar which allows it to see but not be seen. These radar 

systems are said to have low probability of intercept and are called LPI radar systems. 

Some of these properties are as follows [1, 2, 3]: 

 Low sidelobe antennas with infrequent scan modulation, 

 The use of broad non-scanning transmitting beam combined with a 

stationary set of receive beams, 

 Reducing the radar power when tracking a closing target, 

 Reducing peak power while maintaining the required average power, 

 Making use of waveform coding to provide transmitting duty cycles 

approaching to one and using frequency hopping to force the interceptor to 

consider more of the spectrum to characterize the radar, 

 Wideband continuous waveform (CW) emission, 

 Atmospheric attenuation shielding at high frequencies, 

 Very high receiver sensitivity, 

 High processing gain, 

 Coherent detection. 

These techniques provide the ability for the LPI radar to detect and track targets 

without being detected by the intercepting receiver system. LPI radars take advantage of 

a large time-bandwidth product by reducing its transmitted peak power. The relation 

between peak power and duty cycle for pulse radar and CW radar is shown in Figure 1: 
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Figure 1.   Comparison of pulsed radar and CW radar (From [2]). 

Depending on the purpose or mission of the radar, the type of receiver that is 

trying to detect it and the engagement geometry, three levels of LPI can be defined as 

follows [4]: 

 The radar is easily detectable but not easily identifiable-called a low 

probability of identification (LPID) radar, 

 The radar can detect a target and is not detectable by an ES receiver at the 

same range but outside its main beam, 

 The radar can detect a target and is not detectable by an ES receiver 

located on the target-a “quiet radar”. 

The spread spectrum characteristic of an LPI radar is related to the waveform 

design. Pulse compression modulation techniques provide a wideband LPI CW transmit 

waveform which is spread over a wide frequency range in a manner that is initially 

unknown to a hostile receiver. The wide bandwidth makes the interception of the signal 

more difficult. Some of these wideband CW techniques include [2]: 

 Linear and Non-Linear frequency modulation, 

 Frequency hopping (frequency shift keying FSK), Costas arrays, 

 Phase modulation (phase shift keying PSK), 

 Combined phase modulation and frequency hopping (PSK/FSK), 

 Random signal modulation. 

The ratio of range at which the radar signal can be detected by an intercept 

receiver to the range at which it can detect a target is an example of the performance 

parameter for LPI radar [4]. This ratio is given as [2, 4] 
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I

R

R

R
                                                           (1.1) 

where maxRR  is the maximum range at which the LPI radar can detect a target and maxIR  

is the maximum interception receiver detection range. If 1, then the LPI radar can 

detect the targets at further ranges without being detected by the intercept receiver. If 

1 , then the radar cannot be intercepted beyond the range at which it can detect 

targets. This also determines the maximum detection range of the LPI radar without being 

detected by the intercept receiver [2]. 

B. AUTONOMOUS CLASSIFICATION OF LPI RADAR CW 

MODULATIONS 

Reduced transmit power forces the intercept receiver into more sophisticated 

detection schemes. Modern intercept receivers must perform their tasks across a broad 

band and provide non-coherent integration capabilities [5]. This is a result of a point and 

counterpoint relationship that persists between the military radar and the electronic 

warfare (EW) receiving systems [6]. However, the intercept receiver can increase its 

processing gain by implementing time-frequency (T-F) detection techniques. These 

techniques necessitate usage of sophisticated signal processing algorithms. T-F output 

images can provide detection and classification of frequency- and phase-modulated LPI 

modulations. Following the classification, the modulation parameters can be extracted. 

The need for human interpretation of the T-F results however limits these techniques to 

non-real time electronic intelligence receivers. 

Classification using T-F imaging has received considerable attention in such 

diverse fields as humpback whale signal recognition [7, 8], biomedical engineering [9, 

10], underwater acoustic target detection [11], radar target classification [12], power grid 

analysis [13] and radar transmitter identification [14]. With the high degree of detail 

however, trainable autonomous classifiers can easily be overwhelmed by the complexity 

of the T-F input representation and many efforts have been presented to reduce this 

problem. A summary of these efforts is given next and for details the reader is referred to 

the references.  
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Smoothing the T-F images can be used to reduce the density of the features but 

will most often remove the class-distinction detail that the representation was intended to 

resolve. Quantizing the T-F representation in a class- or signal-dependent manner can 

also preserve the needed high resolution detail that highlights the differences between 

classes. A vector quantization technique that is a modified version of a Kohonen’s self-

organizing feature map is applied to the T-F representation in [15]. Class-dependent 

smoothing can also be accomplished by optimizing the T-F transformation kernel [14]. 

This approach eliminates the need to make a priori assumptions about the amount and 

type of smoothing needed and also allows for a direct classification without the need for 

preprocessing to reduce the dimensionality. Optimizing the T-F kernel parameters based 

on the Fisher criterion objective function is also examined in [7]. The Fisher criteria 

however, assume the classes have equal covariance. In [8], the T-F representation is used 

to construct a quadratic discriminant function which is evaluated at specific times to form 

a set of statistics that are then used in a multiple hypothesis test. The multiple hypotheses 

are treated simultaneously using a sequentially rejective Bonferroni test to control the 

probability of incorrect classification. A method based on T-F projection filtering is 

presented in [11]. In this approach the decision strategy about which a target is present 

depends on the comparison of a reference target and the filter output signal. In [12], a 

reduction in the feature vector dimensionality using the geometrical moments of the 

adaptive spectrogram is investigated. A principal components analysis is then used to 

further reduce the dimension of the feature space. This involves calculation of the 

covariance matrix and its eigenvectors. The feature vector is then formed using the eigen 

vectors associated to the highest eigenvalues, and then it is applied to a multi-layer 

perceptron for automatic recognition. 

Automatic recognition of communication signal modulations has also been of 

interest for many years [16]. In particular, research on this topic is typically applicable to 

military systems. Now with the advent of software radios, research on autonomously 

recognizing communication signal modulations has resulted in the realization of 

reconfigurable and adaptive wireless transceivers. In general, there are two methods for 

autonomous classification of signal modulations: decision theoretic techniques and 
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pattern recognition techniques. A classification technique based on a hierarchical neural 

network in which a-priori knowledge is used to speed up the learning phase and improve 

the classification performance is presented in [17]. The a-priori knowledge (from a 

human expert) is incorporated so that similar classes can be grouped into metaclasses for 

subsequent preprocessing by a fast automatic neural classifier. Good classification results 

were obtained for signal-to-noise ratios SNR > 5 dB. A wavelet transform approach using 

a Morlet wavelet to detect the phase changes in the signal is developed in [18]. The phase 

change rate is then used as a feature for the classification of the modulation schemes with 

good results for SNR > 0 dB.  

A set of decision criteria for quickly identifying different types of digital 

modulation is examined in [19]. The key features used in the identification algorithm are 

calculated using conventional signal processing methods with good success being 

achieved at SNR > 10 dB. More recently, automatic modulation recognition was 

investigated using nonlinear transformations that when applied to the communication 

signal, generate unique spectral lines that are modulation dependent [20]. The spectral 

lines are then detected by periodogram analysis and a decision-tree used to classify the 

results in a white Gaussian noise (WGN) environment. Due to a large false alarm rate, the 

performance was later improved using a Hidden Markov Model [21] which showed 

superior performance to the decision-tree approach for SNR > 3 dB. Both a decision-

theoretic and a three-structure neural network approach are compared in [22]. At a SNR > 

15 dB, the decision-theoretic approach gave a 94% success rate while the neural network 

approach gave a success rate of 96%. A pattern recognition approach is investigated in 

[23] where feature extraction is achieved using the Margenau-Hill T-F distribution which 

preserves the signal’s phase information. Classification is accomplished by combining 

the results with a decision-tree for good performance for SNR > 10 dB. The use of multi-

layer perceptron neural networks has been reported for recognition of ten different 

communication modulation types in [24]. In this work, a genetic algorithm is used to 

select the best feature subset from a combined statistical and spectral feature set in order 

to reduce the input dimension and increase the performance of the recognizer. This 

technique resulted in a 99% success at SNR = 0 dB and 93% at SNR =-5 dB. 
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Principal components analysis (PCA) has been used in many applications ranging 

from social science to space science, for the purpose of data compression and feature 

extraction [25]. In [25] PCA is used for automatic target recognition from synthetic 

aperture radar images and a comparison is presented with the conventional conditional 

Gaussian model based on Bayesian classifier. PCA is used in the frequency domain for 

neural identification of the radiated noise from ships in [26].  

C. PRINCIPAL CONTRIBUTION 

Autonomous detection and classification of LPI modulations can eliminate the 

need for a human operator and enable near real-time coherent handling of the threat 

emitters being intercepted. Parameter extraction followed by correlation with existing 

emitters in a database (identification) can then aid in signal tracking and response 

management [27].  

This thesis examines a pattern recognition technique for autonomous 

classification and parameter extraction of various LPI signal modulations. A diverse 

database is developed that consists of twelve LPI modulation techniques each having 21 

SNR levels (-10dB, -9dB… 9dB, 10dB). The LPI modulation techniques include 

Frequency Modulation Continuous Wave (FMCW), Phase Shift Keying (PSK) and 

Frequency Shift Keying (FSK). PSK signals include polyphase (Frank, P1, P2, P3, P4) 

and polytime (T1, T2, T3, T4) codes and FSK signals include Costas and FSK/PSK 

codes.  

The detection techniques examined include the use of the T-F techniques Wigner-

Ville distribution (WVD), the Choi-Williams distribution (CWD) and a Quadrature 

Mirror Filter Bank (QMFB).  

A feature vector is generated by autonomously cropping the modulation energy 

from T-F images. First a 2-D FFT of the images is taken and a frequency domain low 

pass filter is applied to the transformed images. Following the filtering, autonomous 

signal energy cropping is performed using an adaptive threshold based on the marginal  
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frequency distribution of the filtered images. After signal energy cropping, the feature 

vectors are generated by resizing the new images and stacking the columns of the images 

onto each other [27].  

The feature vectors are transformed into a lower dimensional feature space using 

the PCA prior to the classification networks. This is accomplished by first, generating the 

training matrix by stacking the feature vectors next to each other. Second PCA is applied 

to the training matrix where a projection matrix is obtained. Using this projection matrix 

the testing signals are also transformed to the lower dimensional feature space preserving 

their discriminating features [27].  

Once the lower dimensional feature vectors are found they are sent to the non-

linear classifiers for classification. Non-linear classification techniques presented include 

the multi layer perceptron (MLP), radial basis function (RBF) and probabilistic neural 

networks (PNN).  

Results indicate that the best overall classification result is achieved with WVD 

technique. CWD results were very similar to WVD results. QMFB technique on the other 

hand performed very poorly. The test results using the test signals having the same 

parameters with training signals were very promising indicating that the autonomous 

modulation energy isolation and cropping performed well. Concerning the classifier 

performances, the PNN outperformed the RBFNN and MLPNN. The PNN and the 

RBFNN also outperformed the MLPNN concerning the training and classification speed.  

The classification results of polyphase modulations (Frank, P1, P2, P3 and P4) 

were poor. The architecture could not perform to distinguish between polyphase 

modulations successfully. On the other hand the best results were obtained in the 

classification of the FMCW, Costas, FSK/PSK, P2 and T4 modulations.  

After classification autonomous extraction of the waveform parameters is 

accomplished using the images from the Wigner-Ville distribution and the Choi-Williams 

distribution for polyphase modulations. For the WVD images, radon transform is used 

and for the CWD images, 2-D FFT, frequency domain filtering and Marginal frequency 

distribution is used to extract the waveform parameters [28]. 
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The test results obtained from both algorithms tend to coincide well with the 

actual values and the relative error depends on how closely results are examined. At 

3dBSNR  the PWVD parameter extraction algorithm gave erroneous results, while 

the CWD parameter extraction algorithm still gave reasonable results. 

D. THESIS OUTLINE 

This thesis is organized as follows. 

Chapter II presents a brief description of LPI signal modulations. Twelve LPI 

modulation techniques are described. The techniques include Frequency Modulation 

Continuous Wave (FMCW), Phase Shift Keying PSK (polyphase (Frank, P1, P2, P3, P4) 

and polytime (T1, T2, T3, T4) codes) and Frequency Shift Keying FSK (Costas, 

FSK/PSK codes).   

Chapter III describes the structure of the database which is generated to test the 

detection, classification and parameter extraction system simulated in this work. The 

parameters used in the generation of LPI signal modulations are presented. 

Chapter IV presents the detection and classification architecture. The T-F 

distributions used for detection are briefly described. These include Wigner-Ville 

distribution, Choi-Williams distribution and quadrature mirror filter bank. Feature 

extraction algorithm is presented which employs 2-D FFT, autonomous modulation 

energy cropping and PCA. Three different classifiers used to classify the LPI signals are 

also described. A multi-layer perceptron (MLP) network and two radial-basis function 

(RBF) networks are investigated. The classification results are presented and discussed. 

Chapter V investigates two autonomous parameter extraction algorithms using the 

images from the Wigner-Ville distribution and the Choi-Williams distribution for 

polyphase modulations. The test results are presented for both algorithms. 

Chapter VI concludes the thesis and recommends future work. 
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II. REVIEW OF LPI RADAR SIGNAL MODULATIONS 

This chapter describes the LPI signal modulation techniques used to simulate the 

detection, classification and parameter extraction algorithms in this thesis. In order to 

simulate a complex environment, a database which consists of twelve LPI signal 

modulation techniques was generated. The techniques include Frequency Modulation 

Continuous Wave (FMCW), Phase Shift Keying PSK (Frank, P1, P2, P3, P4, T1, T2, T3, 

T4 codes) and Frequency Shift Keying FSK (Costas, FSK/PSK codes).  

A. FREQUENCY MODULATION CONTINUOUS WAVE (FMCW) 

One of the most important CW modulations utilized is the linear triangular 

FMCW emitter, since it can measure the target's range and range rate. Some of the 

properties which make FMCW waveforms still very effective are as follows [3, 29]: 

 Resistance to jamming, 

 It is simple to find range information using an FFT,  

 Implementation of sensitivity time control (STC) to control dynamic range 

and prevent saturation in the receiver is easier in the frequency domain, 

 The frequency modulation spreads the transmitted energy over a large 

modulation bandwidth,  

 Interception of the emitter’s signal is difficult because the power spectrum 

of the FMCW signal is nearly rectangular over the modulation bandwidth, 

 The transmit waveform is deterministic and the transmit power is low, 

 FMCW modulations are compatible with solid-state transmitters, 

 FMCW is easier to implement than phase code modulation, as long as 

there is no strict demand on linearity specifications over the modulation 

bandwidth. 

The waveform consists of two linear frequency modulation sections with positive 

and negative slopes. The frequency of the transmitted waveform for the first section is [2, 

3, 30, 31] 

1
2

c

m

F F
f f t

t
                                                    (2.1) 
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for 0 mt t  and zero elsewhere. Here cf  is the RF carrier frequency, F  is the transmit 

modulation bandwidth, and mt  is the modulation period. The modulation (sweep) 

bandwidth F  is chosen to provide the required range resolution  

2

c
R

F
  m                                                      (2.2) 

The frequency of the transmitted waveform for the second section is similarly 

2
2

c

m

F F
f f t

t
                                                 (2.3) 

for 0 mt t . The transmit signal for the first section is given by [2, 3, 29, 31] 

2

1 0( ) sin 2
2 2

c

m

F F
s t a f t t

t
                              (2.4) 

where cf  is the RF carrier frequency, F  is the transmit modulation bandwidth, and mt  

is the modulation period with 0 mt t . The transmit baseband signal for the second 

section is given by  

2

2 0( ) sin 2
2 2

c

m

F F
s t a f t t

t
                             (2.5) 

for 2m mt t t . FMCW signal characteristics are shown in Figure 2. 
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Figure 2.   Linear Frequency Modulated Waveform and the Doppler Shifted Return 

Signal (From [2]). 

Here 1bf  and 2bf  are the beat frequencies for the first and second segment 

respectively, dt  is the round-trip delay time and df  is the Doppler frequency. 

B. PHASE SHIFT KEYING TECHNIQUES 

PSK CW waveforms have recently been a topic of active investigation. They have 

wide bandwidth characteristics and inherently low periodic ambiguity function (PAF) 

side lobe levels. The PSK techniques can result in a high range resolution waveform, 

while also providing a large SNR processing gain for the radar. The average power of the 

CW transmission is responsible for extending the maximum detection range while 

improving the probability of target detection [2, 3]. 
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In the PSK radar the phase shifting operation is performed in the radar’s 

transmitter, with the timing information generated from the receiver-exciter. Within a 

single code period, the CW signal is phase shifted cN (code length) times, with phase k  

every bt (subcode period) seconds. The resulting code period is [2] 

c bT N t s                                                         (2.6) 

and the code rate is  

1/c c bR N t s
1
                                                    (2.7) 

The range resolution of the phase coding CW radar is 

2

bct
R    m                                                         (2.8) 

The bandwidth of the transmitted signal is 

/ 1/c bB f cpp t Hz                                                (2.9) 

where cpp  is the number of cycles of the carrier frequency per subcode. 

1. Polyphase Codes 

Polyphase coding refers to phase modulation of the CW carrier, with a polyphase 

sequence consisting of a number of discrete phases. These codes are developed by 

approximating a stepped frequency or linear frequency modulation waveform, where the 

phase steps vary as needed to approximate the underlying waveform, and the time spent 

at any given phase state is a constant. The sequence elements are taken from an alphabet 

of size cN >2 [2].  

Low range-time side lobes, ease of implementation, compatibility with digital 

implementation, and low cross-correlation between codes are some of the useful features 

provided by polyphase codes [3]. By increasing the alphabet size cN , the autocorrelation 

side lobes can be decreased significantly while providing a larger processing gain [2].The  
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major disadvantage of this kind of code is that as the phase increment becomes smaller, 

the equipment needed to generate them becomes more complex and therefore more 

costly. [3]. 

a. Frank Code 

The Frank code is well documented and has recently been used 

successfully in LPI radars (such as the Omnidirectional LPI) [30]. These codes are 

characterized by having a perfect autocorrelation function and minimum side lobes [29, 

33].  

The Frank code is derived from a step approximation to a linear frequency 

modulation waveform using M frequency steps and M samples per frequency. The Frank 

code has a length or processing gain of 2

cN M . The phase of the ith sample of the jth 

frequency is [2] 

,

2
( 1)( 1)k i j i j

M
                                              (2.10) 

where i ( 1,2, ,i M ) is the number of the sample in a given frequency, j 

( 1,2, ,j M ) is the number of the frequency and 1,2,3M . Figure 3 (a) illustrates 

the discrete phase values and Figure 3 (b) illustrates the signal phase modulo 2 and 

demonstrates that the Frank code has the largest phase increments from sample to sample 

in the center of the code. 
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(a)      (b) 

Figure 3.   Frank Code Phase Values for 6, 36, 1cM N cpp . 

b. P1 Phase Code 

This code is generated using a step approximation to a linear frequency 

modulation waveform. M frequency steps and M samples per frequency result in a 

compression ratio of 2

cN M . The phase of the ith sample of the jth frequency is [2] 

, [ (2 1)][( 1) ( 1)]k i j M j j M i
M

                         (2.11) 

where i ( 1,2, ,i M ) is the number of the sample in a given frequency, j 

( 1,2, ,j M ) is the number of the frequency and 1,2,3M . P1 codes have the 

largest phase changes at the ends of the code which makes it more Doppler tolerant than 

the Frank code [29, 34]. 
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(a)      (b) 

Figure 4.   P1 Code Phase Values for 6, 36, 1cM N cpp . 

Figure 4 (a) illustrates the discrete phase values and Figure 4 (b) illustrates 

the signal phase modulo 2 and demonstrates that the P1 code has the largest phase 

increments from sample to sample at the ends of the code. 

c. P2 Phase Code 

The P2 code is valid for M even, and each group of the code is symmetric 

about 0 phase. The requirement for M to be even in this code stems from the desire for 

low autocorrelation side lobes. An odd value for M results in high autocorrelation side 

lobes. The phase increment within each phase group is the same as the P1 code, except 

that the starting phases are different [34]. P2 code length is also 2

cN M . The phase of 

the ith sample of the jth frequency is [2] 

, [2 1 ][2 1 ]
2

k i j i M j M
M

                                   (2.12) 

where i ( 1,2, ,i M ) is the number of the sample in a given frequency, j 

( 1,2, ,j M ) is the number of the frequency, 1, 2, , ck N  and 2,4,6,...M .  
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(a)      (b) 

Figure 5.   P2 Code Phase Values for 6, 36, 1cM N cpp . 

Figure 5 (a) illustrates the discrete phase values and Figure 5 (b) illustrates 

the signal phase modulo 2 and demonstrates that the P2 code has the largest phase 

increments toward the end of the code. The P2 PAF has also an opposite slope compared 

to the other PSK sequences [2]. 

The Frank, P1 and P2 polyphase codes have the same response to Doppler 

as the step frequency modulation code in that grating lobes begin to appear with Doppler 

and maximize every odd multiple of a half frequency step [34]. 

d. P3 Phase Code 

The P3 code is conceptually derived by converting a linear frequency 

modulation waveform to baseband, by using a synchronous oscillator on one end of the 

frequency sweep, and sampling the I and Q video at the Nyquist rate [2, 32]. The phase 

sequence of a P3 signal is described by [2] 

2( 1)k

c

k
N

                                                  (2.13) 

for 1,2, , ck N  where cN  is the processing gain.  
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(a)      (b) 

Figure 6.   P3 Code Phase Values for 36, 1cN cpp . 

Figure 6 (a) illustrates the discrete phase values and Figure 6 (b) illustrates 

the signal phase modulo 2 and demonstrates that the P3 code has the largest phase 

increments at the center of the code. 

e. P4 Phase Code 

The P4 code is conceptually derived from a linear frequency modulation 

waveform and consists of the discrete phases of the linear chirp waveform (sub-codes) 

taken at specific, uniformly spaced, time intervals. The P4 code exhibits the same range 

Doppler coupling associated with the chirp waveform; however, the peak side lobe levels 

are lower than those of the unweighted chirp waveform. The phase sequence of a P4 

signal is described by [2] 

2( 1) ( 1)k

c

k k
N

                                          (2.14) 

for 1,2, , ck N  where cN  is the processing gain.  
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(a)      (b) 

Figure 7.   P4 Code Phase Values for 36, 1cN cpp . 

Figure 7 (a) illustrates the discrete phase values and Figure 7 (b) illustrates 

the signal phase modulo 2 and demonstrates that the P4 code has the largest phase 

increments from sample to sample on the ends of the code. 

The most significant difference between the P3 or P4 code compressed 

pulses and that of a Frank code is in the peak side lobes with those of the P3 and P4 codes 

being on the order of 3dB higher than the Frank code [34]. 

2. Polytime Codes 

Another approach to approximate a stepped frequency or linear frequency 

modulation waveform is polytime coding. In this case, the time spent at each phase state 

changes throughout the duration of the code period T. That is, the code sequences use 

fixed phase states with varying time periods at each phase state [35]. 

Four types of polytime sequences are defined. The T1(n) and T2(n) polytime 

sequences can be generated from the stepped frequency model where n is the number of 

phase states used to approximate the underlying waveform. The T3(n) and T4(n) 

polytime sequences are approximations to a linear frequency modulation waveform. The 

quality of the polytime approximation to the underlying waveform can be increased by 

increasing the number of phase states. The phase state (or subcode) durations change as a 
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function of time. The minimum subcode duration sets the waveform bandwidth. Polytime 

coding also has the advantage that arbitrary time-bandwidth waveforms can be generated 

with only a few phase states [2]. 

a. Polytime Code T1(n) 

The T1(n) sequence is generated using the stepped frequency waveform 

that is zero beat at the leading segment. The expression for the wrapped phase versus 

time for the T1(n) polytime sequence is [35] 

1

2
( ) mod  INT ( - ) ,2T

jn
t kt jT

n T
                          (2.15) 

where j = 0,1,2,…,k-1 is the segment number in the stepped frequency waveform, k is the 

number of segments in the T1 code sequence, t is time, and T is the code period.  

An example of how a stepped frequency waveform is converted into a 

T1(4) polytime waveform with 4k  segments and 4n phase states is shown in Figure 

8 (one period with length 16T  ms). Figure 8(a) shows the unwrapped phase change in 

the time domain. Figure 8(b) shows the wrapped phase. 

 

(a)      (b) 

Figure 8.   Stepped frequency waveform generating a T1(4) Code. 
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b. Polytime Code T2(n) 

The T2(n) sequence is generated by approximating a stepped-frequency 

waveform that is zero at its center frequency. For stepped frequency waveforms with an 

odd number of segments, the zero frequency is the frequency of the center segment. If an 

even number of segments are used, the zero frequency is the frequency halfway between 

the two center most segments. The expression for the wrapped phase versus time for the 

T2(n) polytime sequence is [2]  

2

2 2 1
( ) mod  INT ( - ) ,2

2
T

j k n
t kt jT

n T
           (2.15) 

where j = 0,1,2,…,k-1 is the segment number in the stepped frequency waveform, k is the 

number of segments in the T2 code sequence, t is time, and T is the code period.  

An example of how a stepped frequency waveform is converted into a 

T2(4) polytime waveform with 4k  segments and 4n phase states is shown in Figure 

9 (one period with length 16T  ms). Figure 9(a) shows the unwrapped phase change in 

the time domain. Figure 9(b) shows the wrapped phase. 

 

(a)      (b) 

Figure 9.   Stepped frequency waveform generating a T2(4) Code. 
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c. Polytime Code T3(n) 

The T3 Polytime sequence is an approximation to a linear FM underlying 

model. A linear FM waveform that is zerobeat at its beginning generates a T3 waveform 

[35]. The equation for the wrapped phase versus time for a T3 polytime sequence is [2]  

2

3

2
( ) mod  INT ,2

2
T

m

n Ft
t

n t
                                 (2.17) 

where mt  is the modulation period and F  is the modulation bandwidth.  

An example T3(4) polytime waveform with 4n phase states is shown in 

Figure 10 (one period with length 16mt  ms and 250F Hz ). Figure 10(a) shows the 

unwrapped phase change in the time domain. Figure 10(b) shows the wrapped phase. 

 

 

(a)      (b) 

Figure 10.   Stepped frequency waveform generating a T3(4) Code. 
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The T4 Polytime sequence is also an approximation to a linear FM 
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versus time for a T4 polytime sequence is [2]  
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2

4

2
( ) mod  INT ,2

2 2
T

m

n Ft n Ft
t

n t
                         (2.18) 

where mt  is the modulation period and F  is the modulation bandwidth. 

An example of a T4(4) polytime waveform with 4n phase states is 

shown in Figure 11 (one period with length 16mt  ms and 250F Hz ). Figure 11(a) 

shows the unwrapped phase change in the time domain. Figure 11(b) shows the wrapped 

phase. 

 

(a)      (b) 

Figure 11.   Stepped frequency waveform generating a T4(4) Code. 
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The frequency slots used are chosen from a FH sequence and this unknown sequence 
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radar is the simplicity of the FSK architecture especially for track processing and 
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In a FSK radar, the transmitted frequency jf  is chosen from the FH sequence 

1 2, ,...,
FNf f f  of available frequencies for transmission at a set of consecutive time 

intervals 1 2, ,...,
FNt t t . The frequencies are placed in the various time slots corresponding 

to a binary time-frequency matrix. Each frequency is used once within the code period 

with one frequency per time slot and one time slot per frequency. The transmitted 

waveform has FN  contiguous frequencies within a band B  with each frequency lasting 

pt  s in duration. 

1. Costas Codes 

The Costas sequence of frequencies provide a FH code that produce peak side 

lobes in the PAF that are down from the main lobe response by a factor of 1/ N  for all 

regions in the delay-Doppler frequency plane. A Costas frequency sequence 1 2, ,...,
FNf f f  

is a sequence that is a permutation of the integers 1 2, ,...,
FNt t t  satisfying the property [2]  

k i k j i jf f f f                                                 (2.19) 

for every i, j and k such that 1 Fk i i j N . An array that results from a Costas 

sequence in this way is called a Costas array. Most construction methods to produce a 

large number of Costas arrays of equal length are based on the properties of primitive 

roots. For a detailed Costas array construction theory see [2]. 

2. Hybrid FSK/PSK Technique 

The hybrid LPI radar technique discussed in this section combines the technique 

of FSK (FH using Costas sequences) with that of a PSK modulation that uses binary 

phase modulation using Barker sequences of varying length. The hybrid FSK/PSK signal 

subdivides each sub-period pt  of FN  contiguous frequencies within a band B  into BN  

phase slots each of duration bt  as shown in Figure 12. The total number of phase slots in 

the FSK/PSK waveform is then [2] 
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T F BN N N                                                       (2.20) 

with the total code period b F BT t N N .  

 

Figure 12.   General FSK/PSK signal containing FN  frequency subcodes each with 

duration pt  s. Each frequency subcode is subdivided into BN  phase slots 

each with duration bt  (From [2]). 

Figures 3 through 12 presented in this chapter are generated by the low probability of 

intercept toolbox (LPIT) provided with [2]. 

D. SUMMARY 

Basic characteristics of three LPI radar signal modulation techniques (FMCW, 

PSK and FSK) covering several coding types associated with these techniques are briefly 

explained. Overall twelve different modulation types are explained which are used in the 

LPI signal databank generated to test the detection and classification system presented in 

this thesis. With implementing as many modulation types as possible it is intended to 

resemble the real environmental. 

The next chapter presents a brief description of the LPI radar signal databank. The 

signal parameters and folder structure used throughout the simulation is shown. 
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III. DATABASE DESCRIPTION 

Selection of the LPI signal modulation types constitutes an important part for 

classification studies. The modulations should be selected carefully so that providing a 

resemblance of the real environmental conditions. For the purpose of this thesis 

environmental conditions phrase is used to express the various LPI signal modulation 

types which may be used in the battlefield during an operation.  

A database consists of twelve LPI modulation techniques each having 21 SNR 

levels (-10dB, -9dB… 9dB, 10dB) is generated with a sampling frequency of 7000 Hz to 

test the detection and classification system. The parameter values have been chosen so 

that the classification techniques can be easily simulated. A sampling frequency of 7000 

Hz can provide ease of computation concerning the sample size while accomplishes the 

test of the detection and classification system.  

The LPI modulation techniques include Frequency Modulation Continuous Wave 

(FMCW), Phase Shift Keying (Frank, P1, P2, P3, P4, T1(n), T2(n), T3(n), T4(n) codes) 

and Frequency Shift Keying (Costas, FSK/PSK codes). The derivation of these signals 

sometimes causes similarities between the T-F representations of these modulation types 

which makes the database complex. The folder structure used in the detection and 

classification algorithm is shown in Figure 13. 

 

 

Figure 13.   Signal Folder Structure used for Detection and Classification. 
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Two groups of parameters are used for testing purposes. The first group of parameters 

(Data Group-1) is used for the testing of the effects of noise variations on the detection 

and classification algorithm. There are 21 folders in Data Group-1, each has a different 

SNR level. Each folder consists of 50 signals. Data Group-1 consists of 1050 signals in 

total. The testing of these parameters will be represented by the “Test SNR” term. The 

training signals consist of 50 signals with SNR of 10 dB from the Data Group-1 with the 

same parameters.  

The second group (Data Group-2) of parameters is different from the parameters 

of training signals as shown in Table 2. Data Group-2 is used to test the detection and 

classification algorithms with different modulations and SNR levels. Note that this is a 

potentially hard problem since the carrier cycles per subcode and modulation periods are 

different. This set of results is referred to as “Test Modulation”. There are also 21 folders 

in this group each with a different SNR level. Each folder consists of 31 signals. Data 

Group-2 consists of 651 signals in total. The test results of these parameters will be 

referred to as “Test Modulation”. Both training and testing signals consist of two carrier 

frequencies; 1495 Hz and 2195 Hz. The LPI radar signals presented below are generated 

by the low probability of intercept toolbox (LPIT) provided with [2]. 
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Table 1.   Signal Parameters for Training and Testing SNR (Test SNR). 

 

SIGNAL TYPE sf  (Hz) 

(Sampling freq.) 

cf  (Hz) 

(Carrier freq.) 

SNR 

10 :10dB  (1 dB increments) 

F (Hz) 

(Modulation 

bandwidth) 

mt (ms) 

(Modulation 

period) 

FMCW 7000 
1495 250 15 

2195 800 15 

 

SIGNAL TYPE sf  (Hz) 

(Sampling freq.) 

cf  (Hz) 

(Carrier freq.) 

SNR 

10 :10dB  (1 dB increments) 

cN   

(Code length) 

cpp   

(Cycles per 

subcode) 

FRANK 7000 

1495 

9 5 

25 2 

36 1 

2195 
16 6 

25 3 

P1 7000 

1495 

9 5 

25 2 

36 1 

2195 16 
4 

5 

P2 7000 

1495 
16 3 

36 1 

2195 
16 5 

36 3 

P3 7000 

1495 
9 

4 

5 

36 1 

2195 
16 6 

25 3 

P4 7000 

1495 

9 5 

25 2 

36 1 

2195 16 
4 

5 
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SIGNAL TYPE 
sf  (Hz) 

(Sampling 

freq.) 

cf  

(Hz) 

(Carrier 

freq.) 

T (ms) 

(Overall 
code 

period ) 

mt (ms) 

(Modul

ation 
period) 

SNR 

10 :10dB  (1 dB increments) 

F (Hz) 

(Modulation 

bandwidth) 

n 
(Number 

of phase 

states) 

k 
(Segment 

number in 

the stepped 

frequency 
waveform) 

T1 7000 

1495 30 N/A N/A 
2 5 

3 4 

2195 30 N/A N/A 
2 

3 

4 

4 3 

T2 7000 

1495 30 N/A N/A 
4 3 

8 4 

2194 30 N/A N/A 
4 

3 

4 

6 3 

T3 7000 

1495 N/A 
25 300 4 

N/A 

30 900 9 

2195 N/A 

25 400 2 

30 1000 7 

35 800 6 

T4 7000 

1495 

N/A 25 400 2 

N/A 
N/A 30 

550 3 

850 7 

2194 N/A 30 
600 5 

900 9 

 

SIGNAL TYPE 
sf  (Hz) 

(Sampling 

freq.) 

Frequency Choices 
mt (ms) 

(Modulati

on period) 

pt (ms) 

(Sub code-

period) 

SNR 

10 :10dB   

(1 dB increments) 

Barker Frequency 

FSK/PSK Costas 7000 
(3 2 6 4 5 1)x150 Hz N/A 1 5 

(5 4 6 2 3 1)x300Hz N/A 0.3 13 

Costas 7000 

(3 2 6 4 5 1)x200Hz 5 N/A 

N/A (2 4 8 5 10 9 7 3 6 

1)x150Hz 
3 N/A 
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Table 2.   Signal Parameters for Testing Modulations (Test Modulation). 

SIGNAL TYPE sf  (Hz) 

(Sampling freq.) 

cf  (Hz) 

(Carrier freq.) 

SNR 

10 :10dB  (1 dB increments) 

F (Hz) 
(Modulation bandwidth) 

mt (ms) 

(Modulation 

period) 

FMCW 7000 
1495 500 20 

2195 400 20 
 

SIGNAL TYPE sf  (Hz) 

(Sampling freq.) 

cf  (Hz) 

(Carrier freq.) 

SNR 

10 :10dB  (1 dB increments) 

cN   

(Code length) 

cpp   

(Cycles per 

subcode) 

FRANK 7000 

1495 9 4 

2195 
16 

 

4 

5 

P1 7000 

1495 9 4 

2195 
16 6 

25 3 

P2 7000 
1495 16 2 

2195 16 4 

P3 7000 

1495 25 2 

2195 16 
4 

5 

P4 7000 

1495 9 4 

2195 
16 6 

25 3 
 

SIGNAL TYPE 
sf  (Hz) 

(Sampling 

freq.) 

cf  

(Hz) 

(Carrier 

freq.) 

T (ms) 

(Overall 

code 

period ) 

mt (ms) 

(Modul

ation 

period) 

SNR 

10 :10dB  (1 dB increments) 

F (Hz) 

(Modulation 

Bandwidth) 

n 
(Number 
of phase 

states) 

k 
(Segment 

number in the 
stepped 

frequency 

waveform) 

T1 
7000 

 

1495 30 
N/A N/A 4 4 

N/A N/A 6 3 

2195 30 N/A N/A 3 3 

T2 
7000 

 

1495 30 
N/A N/A 6 4 

N/A N/A 4 5 

2194 30 N/A N/A 8 3 

T3 7000 
1495 N/A 

30 500 5 

N/A 35 700 8 

2195 N/A 30 600 3 

T4 7000 

1495 N/A 35 700 6 

N/A 
2194 

N/A 25 450 4 

N/A 35 750 8 
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SIGNAL TYPE 
sf  (Hz) 

(Sampling 

freq.) 

Frequency Choices 
mt (ms) 

(Modulati

on period) 

pt (ms) 

(Sub 
code-

period) 

SNR 

10 :10dB  

(1 dB 

increments) 

Barker 

Frequency 

FSK/PSK Costas 7000 
(3 2 6 4 5 1)x200 Hz N/A 0.4 11 

(5 4 6 2 3 1)x250Hz N/A 0.7 7 

Costas 7000 (5 4 6 2 3 1)x400Hz 5 N/A N/A 

 

A. SUMMARY 

The database used for the testing of pre-processing, classification and parameter 

extraction algorithms is explained. The folder configuration based on twenty one SNR 

levels is shown. The parameters of twelve modulation types used in this work are 

presented. 

The next chapter discusses the detection and classification architecture used in 

this work. Four detection techniques including the Wigner-Ville distribution (WVD), the 

Choi-Williams distribution (CWD), Quadrature Mirror Filter Bank (QMFB), and 

Cyclostationary Spectral Analysis (CYCL) are briefly explained. The pre-processing 

algorithms both for T-F and B-F detection techniques are described. The subjects include 

2-D Discrete Fourier transform, frequency domain filtering, autonomous signal cropping 

and principal component analysis. Three classification networks (multi layer perceptron, 

radial basis function and probabilistic neural network) used in this work are explained.  
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IV. DETECTION AND CLASSIFICATION ARCHITECTURE 

The autonomous detection, classification and parameter extraction system block 

diagram used in this work is illustrated in Figure 14. The system contains T-F (the 

Wigner-Ville distribution , the Choi-Williams distribution and Quadrature mirror filter 

bank ) detection techniques. The detection techniques provide an image output. The 

output image from each detection method is preprocessed to form a feature vector. An 

autonomous image cropping and feature extraction algorithm based on two-dimensional 

Fast Fourier Transform (2-D FFT) and PCA is applied to the T-F images.  

Later the extracted features are used as input to a non-linear classifier. In this 

work an MLP neural network, an RBF neural network and a PNN are used as classifiers. 

The output of the classifiers generates a confusion matrix (CM) which shows the 

detection results as a probability of correct classification (Pcc) for each trial. The columns 

of the CM represent the input vector modulation type while the rows indicate the 

assignment by the classifier and the sum of all values should be one. The diagonals of the 

CM indicate the Pcc, and are the percentage of correct assignments by the network. Once 

the modulation is classified, the parameters can be extracted using the T-F images.  
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Figure 14.   Detection, Classification and Parameter Extraction Architecture. 

A. DETECTION TECHNIQUES 

1. Wigner-Ville Distribution 

One of the most prominent members of T-F energy density functions is the 

Wigner-Ville distribution (WVD). The WVD is computed by correlating the signal with a 

time and frequency translated version of itself. The time and frequency marginal 

properties are preserved for any signal [36]. The WVD exhibits the highest signal energy 

concentration in the T-F plane for linearly modulated signals. The WVD also contains 

interfering cross terms between every pair of signal components which limits its 

applications. Although several formulations can be used to reduce the amplitude of the  

 

 



 33 

cross terms, since the cross terms contain additional T-F information, it is of interest to 

determine if they facilitate the classification process in comparison to the CWD and 

QMFB [2]. 

The WVD of a continuous one-dimensional function ( )x t  is defined as [2]  

*( , ) ( ) ( )
2 2

j

xW t x t x t e d                                     (4.1) 

where t is the time variable,  is the angular frequency variable ( 2 f ), and the * 

indicates complex conjugate. Let ( )x l  be a sampled time series representing the digitized 

signal where l is a discrete time index from  to . The discrete WVD is  

* 2( , ) 2 ( ) ( ) j n

n

W l x l n x l n e                                   (4.2) 

Windowing the data results in the pseudo WVD (PWVD) 

1
* 2

1

( , ) 2 ( ) ( ) ( ) ( )
N

j n

n N

W l x l n x l n w n w n e                        (4.3) 

where w(n) is a length 2N-1 real window function with w(0) = 1. Using fl(n) to represent 

the kernel function 

*( ) ( ) ( ) ( ) ( )lf n x l n x l n w n w n                                        (4.4) 

the PWVD becomes 

1
2

1

( , ) 2 ( )
N

j n

l

n N

W l f n e                                                 (4.5) 

where /(2 )k N . The choice of N (usually a power of 2) greatly affects the 

computational cost as well as the time frequency resolution of the output. Once N is 

chosen, the kernel function can be generated. Since *( ) ( )l lf n f n , only ( )lf n needs to 

be computed for 0n  [2]. For a detailed analysis of WVD refer to [2, 34]. 
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Figure 15.   Pseudo Wigner-Ville Distribution of a Frank Coded Signal with cN 36. 

Figure 15 shows the PWVD results for a Frank coded signal with cN 36 

subcodes, a carrier frequency of 1cf 495 Hz with a sampling frequency of 7sf  kHz 

in a contour plot. With the number of carrier frequency cycles within a subcode of 

1cpp , the transmitted bandwidth / 1495HzcB f cpp  and the code period is T = 

24.1 ms. Note the presence of the characteristic cross terms. Note also that with the 

PWVD time-frequency information, the signal parameters can be measured accurately 

including the number of subcodes /cN T B . The frequency resolution of the WVD 

/ 2W sf f N  and the time resolution 1/W st f . For efficiency the implementation of 

the Wigner-Ville distribution used in this work was made by [37].  
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2. Choi-Williams Distribution 

The Choi-Williams Distribution (CWD) simultaneously gives the representation 

of a signal in both time and frequency. The Choi-Williams distribution has been noted as 

one of the more useful in the Cohen’s class of distributions since it reduces the amplitude 

of the cross terms [27]. This distribution is a bilinear time-frequency analysis techniques 

for signal processing and has been used in many fields of engineering.  

The Choi-Williams distribution is given as [38] 

2 ( ) * 2( , ; ) ( , ) ( / 2) ( / 2)j s t j

xC t f e f x s x s e d dsd         (4.6) 

where ( , )f  is a 2-D function called the parameterization function. A natural choice 

for the kernel is to consider a Gaussian function  

2 2( ) / 2( , )f e                                               (4.7) 

resulting in  

2 2 22 ( ) / * 22
( , ) ( / 2) ( / 2)s t j

xCW t e x s x s e dsd          (4.8) 

The frequency-resolution and the suppression of the cross-terms can be controlled 

by varying the . The smaller the parameter , the more the cross-terms are suppressed. 

But this also will affect the auto-terms. Therefore, there is trade-off for the selection of 

the parameter  [36]. Note that as , the corresponding distribution converges to 

the the Wigner-Ville distribution. Note that this means to set the parameterization 

function to one, ( , ) 1f . 

Figure 16 shows the Choi-Williams results for a Frank coded signal with cN 36 

subcodes, a carrier frequency of 1cf 495 Hz with a sampling frequency of 7sf  kHz 

in a contour plot. With the number of carrier frequency cycles within a subcode of 

1cpp , the transmitted bandwidth / 1495HzcB f cpp  and the code period is T = 

24.1 ms. Note that with the CWD time-frequency information, the signal parameters can  
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also be measured accurately including the number of subcodes /cN T B . Note that the 

cross-terms are suppressed. The implementation of the Choi-Williams distribution used 

in this work was made by [37]. 

 

Figure 16.   Choi-Williams Distribution of a Frank Coded Signal with cN 36. 

3. Quadrature Mirror Filter Bank Tree 

A QMFB tree consists of a number of layers of fully connected pairs of 

orthogonal wavelet filters (or basis functions) that linearly decompose the received 

waveform into tiles on the time-frequency plane. A modified sinc filter is used and every 

filter output is connected to a filter pair in the next layer, as shown in Figure 17 [39]. 

Figure 17 also illustrates the implementation of the QMFB tree used in this thesis work. 

The tiles are used to refer to the rectangular regions of the time-frequency plane 

containing the basis function's energy. Each filter pair divides the digital input waveform 

T 

B 
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into its high-frequency and low-frequency components, with a transition centered at . 

Within the series of time-frequency layers, each subsequent layer provides a trade-off in 

time and frequency resolution. By examining the energy within the tiles, parameters such 

as bandwidth, center frequency, phase modulation, signal duration and location in the 

time-frequency plane can be determined [2]. 
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Figure 17.   Quadrature Mirror Filter Bank Tree (From [39]). 

 

The received signal is first padded with zeros to contain 2L

pN samples where L 

is the number of layers within the tree. A normalized input of one sample per second is 

assumed, with a signal bandwidth of [0, ]  radians, with  corresponding to half the 

sampling frequency. Since each filter’s output signal has half the bandwidth, only half the 

samples are required to meet the Nyquist criteria; therefore, these sequences are  
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downsampled by two and the same number of output samples is returned [40]. The 

/ 2l L  layer provides a good compromise in time and frequency resolution. The 

frequency resolution of a QMFB layer l is [2]  

2(2 1)

s

l

f
f                                                        (4.9) 

where sf  is the sampling frequency. The resolution in time is determined by how many 

samples are used within the QMFB and is 

2

(2 1)

L

L l

s

t
f

                                                 (4.10) 

where L is the total number of layers. In this work layer 5l is used which provides an 

output with 32 32  points. In this work QMFB is implemented using LPIT provided with 

[2]. 

 

Figure 18.   QMFB Result for Layer 5l  for a Frank Coded Signal with cN 36. 
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Figure 18 shows the QMFB result for layer 5l  for a Frank coded signal with 

cN 36 subcodes, a carrier frequency of 1cf 495 Hz with a sampling frequency of 

7sf  kHz in a contour plot. With the number of carrier frequency cycles within a 

subcode of cpp = 1, the transmitted bandwidth / 1495HzcB f cpp  and the code 

period is T = 24.1 ms. Here 10L , 0.0047st  and 112.9Hzf . 

B. AUTONOMOUS PREPROCESSING 

Autonomous preprocessing is performed in order to generate a feature vector 

from the T-F images to be used in the classification networks. The first goal of the 

algorithm is to autonomously crop a part of the image where the signal is present. This is 

the part of the image within the frequency band of interest. The frequency bands of 

interests are illustrated in Figure 19 between the dashed lines.  

 

Figure 19.   The Frequency Bands of Interests (a) PWVD (b) CWD (c) QMFB. 
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The sensitivity of the cropping is very important since the noise level present in 

the signal may easily distort the algorithm. The less the cropping algorithm is affected by 

the SNR changes the more accurate the expected classification results. 

The second goal is to process the images with minimum interference (for instance 

thresholding, binarization, morphological operations, etc.). Any operation on the images 

either adds new information to the image or results in some information loss. Third goal 

is to reduce the dimension of the feature vectors while preserving their discriminating 

properties. 

T-F representations are processed as images throughout this work. Let the 

dimension of an image be M N . In this work for the PWVD and CWD images ,M N  

depend on the length of the intercepted signal sequence, which is the sample size. For the 

QMFB images 32M N  depend on the selected layer 5l . Following sections 

briefly explain each step taken through T-F autonomous cropping and feature extraction 

operations. 

1. T-F Autonomous Cropping and Feature Extraction Algorithm 

Block diagram of the T-F autonomous cropping and feature extraction algorithm 

used in this work is shown in Figure 20. 
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Figure 20.   T-F autonomous cropping and feature extraction algorithm (From [27]). 

The first step of the algorithm is to detect and delete the region where no signal is 

present. No signal regions may occur if the duration of the LPI signal is smaller than the 

time interval processed. The block corresponds to this step is shown in Figure 21. This 

step is performed as defined in [29].  

 

Figure 21.   Detect and Delete “No-signal region” Block. 
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Figure 22 shows an illustration of this operation. The image is obtained by WVD 

representation of a Frank code signal with 7sf kHz , 1495cf Hz , 36cN , and 1cpp  

(B = 1495 Hz) with an 0SNR dB . Figure 22 (a) shows the original output of the WVD, 

and Figure 22 (b) shows the new image after the no-signal region is deleted. 

 

Figure 22.   (a) T-F Image with No-Signal Region  (b) Image after No-Signal Region 

Cropped. 

Followed by the deletion of the no-signal region, the image is lowpass filtered 

(LPF). Assuming that the additive noise has high frequency components and the LPI 

modulation energy is preserved in the low frequencies, after filtering only the modulation 

energy should be preserved. The filtering can be performed in the frequency domain [27].  

The following section briefly explains the 2-D Discrete Fourier Transform (2-D 

DFT) and the implementation of frequency domain filtering. Since QMFB images have 

very small dimensions ( 32 32 ) compared to the PWVD and CWD images, they are 

resized and enlarged by 10 times of their original sizes after the no signal region is 

cropped (prior to the filtering).  

(a)     (b) 
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a. The 2-D Discrete Fourier Transform and Frequency Domain 

Filtering 

Let 1 2( , )f k k , for 1 0,1,2,..., 1k M  and 2 0,1,2,..., 1k N , denote an 

M N  image. The 2-D DFT of f, denoted by ( , )F u v , is given by equation [41]  

1 2

1 2

1 1
2 ( / / )

1 2

0 0

( , ) ( , )
M N

j uk M vk N

k k

F u v f k k e                             (4.11) 

for 0,1,2,..., 1u M  and 0,1,2,..., 1v N . The frequency domain is simply the 

coordinate system spanned by ( , )F u v with u and v as variables. The M N  rectangular 

region defined by u and v is often referred as the frequency rectangle and of the same size 

as the input image. Note that frequency rectangle can an also be defined by digital 

frequencies as shown in Figure 23.  

 

Figure 23.   Frequency Rectangle Defined by Digital Frequencies. 

 

where 1 2 /u M  and 2 2 / N .  

Given ( , )F u v , 1 2( , )f k k  can be obtained by means of the inverse DFT. 

Both DFT and inverse DFT are obtained in practice using a fast Fourier transform (FFT) 

algorithm [41]. If 1 2( , )f k k  is the image obtained by WVD representation of a Frank  
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signal with 7kHzsf , 1495cf Hz , 36cN , and 1cpp  (B = 1495 Hz), with an 

0SNR dB , the 2-D FFT of 1 2( , )f k k is shown in Figure 24 (a) and the zero frequency 

component shifted to the center of spectrum is shown in Figure 24 (b). 

 

Figure 24.    (a) 2-D FFT of image shown in Figure 22 (b) and (b) The zero frequency 

component is shifted to the center of spectrum. 

The convolution theorem which is the foundation for linear filtering in 

both spatial and frequency domains can be written as follows [41]  

1 2 1 2( , )* ( , ) ( , ) ( , )f k k h k k H u v F u v                                   (4.12) 

and conversely,  

1 2 1 2( , ) ( , ) ( , )* ( , )f k k h k k H u v F u v                                   (4.13) 

Filtering in the spatial domain consists of convolving an image 1 2( , )f k k  

with a filter mask, 1 2( , )h k k  According to the convolution theorem, the same result can be 

obtained in the frequency domain by multiplying ( , )F u v  by ( , )H u v which can also be 

referred as the filter transfer function [41]. The frequency domain filtering used in this 

work is shown in Figure 25. 

(a)     (b) 
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Figure 25.   Frequency Domain Filtering Operations. 

In this work ( , )H u v  is obtained in three steps. First, the desired frequency 

response (ideal lowpass filter) ( , )dH u v  is created as a matrix. An ideal lowpass filter has 

the transfer function [41]  

0

0

1 ( , )
( , )

0 ( , )
d

if D u v D
H u v

if D u v D
                                        (4.14) 

where 0D  (cutoff parameter) is a specified nonnegative number and D(u,v) is the distance 

from point (u,v) to the center of the filter. 0D  can also be defined as the normalized value 

of digital frequencies 1 2,  by . 

Second, a two dimensional Gaussian window is created with a standard 

deviation 

0 / 8N D                                                    (4.15) 
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where N is the number of columns in the image. Since the standard deviation of the 

window is related to 0D , the structure becomes adaptive to the changes in the desired 

frequency responses. In this application both the frequency response matrix and the 

Gaussian window have dimensions of M N  which is equal to the image dimension 

( 1 2( , )f k k ) and the 2-D FFT output dimension ( ( , )F u v ). The last step is to multiply 

( , )dH u v  by the Gaussian window.  

The transfer function of the Gaussian lowpass filter obtained by this 

multiplication process is then given by [41] 

2 2( , ) / 2( , ) D u vH u v e                                            (4.16) 

These steps are illustrated in Figure 26. Figure 26 (a) shows the desired frequency 

response with 0 0.3D  (where 0 0,1D ) or 1 2 0.3 , Figure 26 (b) shows the 

Gaussian window with 0 / 8 33.825N D . The dimension of both the frequency 

response matrix and Gaussian window is 1024, 902M N . Figure 26 (c) shows the 

resultant Gaussian lowpass Filter and Figure 26 (d) shows the Gaussian lowpass filter as 

an image. Several values of 1 2,  are tested during the simulation to find an optimum 

value for each distribution. For each trial the digital cutoff frequencies are set to be 

1 2 . 
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Figure 26.   Implementation of Filter Function (a) Desired Frequency Response,              

(b) Gaussian Window, (c) Gaussian Lowpass Filter, (d) Gaussian Lowpass 

Filter as an Image. 

After obtaining the lowpass filter, the frequency domain filtering can be 

implemented by multiplying ( , )F u v  by ( , )H u v . This operation is followed by shifting 

back of the frequency components and taking the inverse FFT of the filtered domain. The 

last step is obtaining the real part of the inverse FFT. Figure 27 illustrates these steps. 

Figure 27 (a) shows the result after the frequency domain filtering of Figure 22 (b), 

Figure 27 (b) shows decentering of the frequency components and Figure 27 (c) shows 

the real part of the 2-D inverse FFT. 

(a) 
(b) 

(c) (d) 
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(a) (b)

(c)

 

Figure 27.   (a) Frequency Domain Filtering, (b) Shift Back the Frequency 

Components, (c) 2-D Inverse FFT output. 

b. Determination of the Frequency Band of Interest 

The steps for determining the frequency band of interest from the T-F 

plane is shown in Figure 28. The operations are applied to the marginal frequency 

distribution (MFD) of the T-F plane. The MFD gives the instantaneous energy of the 

signal as a function of frequency. This is obtained by integrating the time values for each 

frequency in the T-F image resulting M 1 values A. 
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Figure 28.   Determining the Frequency Band of Interest. 

The MFD of a Frank coded signal with 7kHzsf , 1495Hzcf , 36cN , 

and 1cpp  (B = 1495 Hz) with an 0dBSNR  is shown in Figure 29. 

 

Figure 29.   Marginal Frequency Distribution (MFD) of a Frank Signal with cN 36 

(From [27]). 
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As it can be seen from the Figure 29 the higher energy interval 

corresponds to the frequency band of interest which preserves the modulation energy. 

The goal is to isolate and crop the region of interest as accurately as possible. This is 

done by setting a threshold. The instantaneous energy values above the threshold can be 

collected and cropped. But one problem will emerge as the noise level changes; the actual 

position set by the threshold may change from one SNR level to another. In order to 

minimize this effect, a smoothing operation is applied on A [27].  

The smoothing is applied in two steps as shown in Figure 30. In the first 

step an adaptive filter is applied to attenuate the noise. In the second step a moving 

average filter is applied to smooth the edges and local peaks. 

 

Figure 30.   MFD Smoothing via Adaptive Filter & Moving-Average Filter. 

An adaptive filter is a filter that changes behavior based on the statistical 

characteristics of the input signal within the filter. In this work a Wiener filter is applied 

to A using the local neighborhood of size m-by-1 to estimate the local image mean and 

standard deviation. The filter estimates the local mean and variance around each vector 

element. The local mean is estimated as [42],  

1
( )

n

n
m

A                                                     (4.17) 

and the local variance is estimated as 

2 2 21
( )

n

n
m

A                                              (4.18) 
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where  is the m-by-1 local neighborhood of each element in the vector A. The Wiener 

filter is created element wise using these estimates. The processed image within the local 

neighborhood can be expressed as  

2 2

2
( ) ( ( ) )b n nA                                      (4.19) 

where 2 is the noise variance estimated using the average of all the local estimated 

variances. When the variance is large, the filter performs little smoothing and when the 

variance is small, it performs more smoothing. 

For PWVD and CWD images a local neighborhood of 10  is used and 

for QMFB images 4  is used. Figure 31 shows the output of the adaptive filter for the 

input MFD of Frank signal with cN 36 previously shown in Figure 29 with 10 . 

Note that there is considerable noise attenuation. 

 

Figure 31.   MFD of a Frank Coded Signal with cN 36 after Adaptive Filtering. 
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Although the adaptive noise attenuation gives promising results, the 

threshold determination may be affected by the local noise peaks that could not be 

reduced by the adaptive filter. To avoid this problem a moving average filter is applied to 

the output of the adaptive filter. As a generalization of the average filter, averaging over 

1N M  neighboring points can be considered. The moving average filter is 

represented by the following difference equation [43]: 

1
( ) ( )

1

M

k N

y n x n k
N M

                                      (4.20) 

where ( )x n  is the input and ( )y n  is the output. The corresponding impulse response is a 

rectangular pulse. For PWVD and CWD images a window length of 1 10N M  is 

used and for QMFB images 1 4N M  is used. Figure 32 shows avgA , the output 

vector of the moving average filter with 1 10N M . 

 

Figure 32.   Output of Moving Average Filter with a Window Length of 10. 
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After moving average filtering, the output is normalized by the maximum 

value of 
avgA  as follows,  

max( )

avg

n

avg

A
A

A



                                                  (4.21) 

where nA  is the normalized smoothed MFD. After normalization a histogram of 100 bins 

is generated for PWVD and CWD images and a histogram of 30 bins is generated for 

QMFB images. Using these histogram bins a threshold is determined [27]. Threshold 

determination is illustrated in Figure 33 using the histogram of nA  for the 30th bin. Note 

that the value corresponding to the 30th bin, 0.2954hT  is selected as the threshold. For 

simulation purposes the histogram bin numbers are optimized using a range of values for 

each detection technique and each network. The bin number which provides the best Pcc 

is selected. 

 

Figure 33.   Threshold Determination by a Histogram. 

Once the threshold is determined, the values of nA  below the threshold 

are set to zero. Then the beginning and ending frequencies of the frequency band of 

interest is determined as shown in Figure 34. Using the lowest and highest frequency 

values from the frequency band of interest the modulation energy can now be cropped 

from the image. 
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Figure 34.   Frequency Band of Interest [27]. 

c. Cropping and Feature Vector Generation 

The steps for cropping and feature vector generation are shown in Figure 

35.  

 

Figure 35.   Autonomous Cropping and Feature Vector Generation Blockset. 

 

Frequency band 

of interest 
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After the determination of the frequency band of interest the modulation 

energy is autonomously cropped from the LPF output containing the noise filtered image. 

The cropping is illustrated in Figure 36. Figure 36 (a) shows the LPF output which is 

obtained previously, Figure 36 (b) shows the cropped region and Figure 36 (c) shows the 

contour plot where the signal energy can easily be seen. Note also the absence of the 

cross terms. 

 

Figure 36.   (a) LPF output (b) Cropped region (c) Contour Plot of the Cropped 

Region. 

Once the LPF output is cropped, the new image is resized to 50 400  

pixels for the PWVD and CWD images. The QMFB images are resized to 30 120  

pixels. Resizing is done in order to obtain as much similarity as possible between the 

same modulation types. Following the resizing operation the columns of the resized 

image are formed the feature vector of size 50 400 20000  for PWVD and CWD 

images, and of size 30 120=3600  for QMFB images.  

2. Principal Components Analysis 

PCA is one possible approach to reduce the dimensionality of the class features. 

The method projects high-dimensional data vectors onto a lower dimensional space by 

using a projection which best represents the data in a mean square sense [44]. PCA can 

be viewed as a rotation of the existing axes to new positions in the space defined by the 

(a) 
(c) 

(b) 
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original variables, where there is no correlation between the new variables defined by the 

rotation [45]. Using PCA the given data vector is represented as a linear combination of 

the eigenvectors obtained from the data covariance matrix. As a result, lower dimensional 

data vectors may be obtained by projecting the high-dimensional data vectors onto a 

number of dominant eigenvectors [44]. 

The PCA maps an ensemble of P N-dimensional vectors 1 2[ , ,..., ]px x xX  onto 

an ensemble of P D-dimensional vectors 1 2[ , ,..., ]py y yY , where D N , using a linear 

transformation. This linear transformation can be represented by a rectangular matrix A  

so that [44] 

H
Y A X                                                         (4.22) 

where A  has orthogonal column vectors, 1,2,...,i P , and H is the Hermitian operation. 

For PCA, the matrix A  is selected as the P D  matrix containing the D eigenvectors 

associated with the larger eigenvalues of the data covariance matrix 
H

X X . With such a 

choice of transformation matrix A , the transformed data vectors Y  have uncorrelated 

components [44] 

In this work the X  matrix is obtained first to form the training data set. The 

feature extraction algorithm is applied to the images in the “Training Signals” folder for 

each detection technique. The cropped images are resized and a column vector is formed 

to represent the signal modulation. These column vectors are stacked together to form the 

training data set matrix. Later the mean of the training matrix is calculated column wise 

and the mean is subtracted from the training data set matrix giving the matrix X . This 

operation is illustrated in Figure 37.  
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Figure 37.   Training Matrix Generation (From [27]). 

where P is the number of training signals which is 50 in this work, and N is the length of 

the feature vectors. For PWVD and CWD X  is of dimension 20000 50  (50 training 

signals) and for QMFB X  is of dimension 3600 50 . 

In order to obtain the non-zero eigenvectors of X , singular value decomposition 

(SVD) may be performed. SVD states that any N P  matrix X  can be decomposed as 

[46]  

H
X U V                                                            (4.23) 

where U  is the N N  unitary matrix, V  is the P P  unitary matrix and  is the N P  

matrix of non-negative real singular values. Note that  

( ) ( )H H H H H HX X V U U V V V                               (4.24) 
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equation (4.24) indicates that the eigenvectors of 
H

X X  is contained in the V  matrix and 

the eigenvalues of 
H

X X  are the squared singular values of X  which are the diagonal 

elements of the matrix H . It can similarly be shown that the eigenvectors of 
H

XX  

are contained in the U  matrix.  

If min( , )p P N , both 
H

XX  and 
H

X X  will have the same p non-zero 

eigenvalues [45]. The product of X  and V  gives  

H
XV U V V U                                             (4.25) 

since V  is unitary, and the eigenvectors associated with non-zero eigenvalues can be 

extracted by 

1
U XV                                                     (4.26) 

As a result the non-zero eigenvalues of the higher dimensional covariance matrix 
H

XX  

may be computed by computing SVD of smaller dimensional covariance matrix [45] 

H
X X                                                          (4.27) 

Following the SVD of the data matrix and determination of the eigenvector matrix 

U , dimensionality reduction is performed using the projection (transformation) matrix 

A . The matrix A  is composed of D eigenvectors selected from the eigenvector matrix 

U corresponding to D largest eigenvalues. In order to find the D largest eigenvalues, the 

biggest eigenvalue is multiplied by a threshold constant and the eigenvalues above the 

product are taken. Let the threshold be Th  and named as eigenvalue selection threshold 

constant. Three values of [0.001,0.005,0.01]Th  are used in this work. For each case, 

once the eigenvalues are found, four variations of eigenvector selection are used. Let 

these variations be i , where 0,1,2,3i . The variations are defined by the i index as 

follows: 

0 All the eigenvectors corresponding to the eigenvalues above Th  are used 

to form the matrix A . 
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1 All the eigenvectors corresponding to the eigenvalues above Th  are 

selected initially; all of them except the eigenvector corresponding to the eigenvalue with 

the highest value are used to form the matrix A . 

2  All the eigenvectors corresponding to the eigenvalues above Th  are 

selected initially; all of them except the two eigenvectors corresponding to the two 

eigenvalues with the highest values are used to form the matrix A . 

3  All the eigenvectors corresponding to the eigenvalues above Th  are 

selected initially; all of them except the three eigenvectors corresponding to the three 

eigenvalues with the highest values are used to form the matrix A . 

Once the projection matrix A  is generated, both the training matrix X  and the 

testing signals are projected onto a smaller dimensional feature space. The dataset is 

reduced in dimension to D using the projection process. The projected data is used later 

for classification. 

The MATLAB functions which perform PCA is derived from [45] and 

implemented in the classification routines presented in this work. The PCA algorithm is 

shown below. 

 

Figure 38.   PCA Algorithm (From [27]). 
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C. CLASSIFICATION NETWORKS 

This section describes three types of non-linear classification networks. These 

include the multi layer perceptron (MLP), radial basis function (RBF) and probabilistic 

neural networks (PNN).  

1. MLP Classifiers 

The MLP is a feed-forward interconnection of individual non-linear parallel 

computing units called neurons [24]. A neuron is an information-processing unit that is 

fundamental to the operation of a neural network. Three basic elements of a neuron can 

be identified [47]: 

1. A set of synapses or connecting links, each of which is characterized by a 

weight of its own. 

2. An adder for summing the input signals, weighted by the respective 

synapses of the neuron. 

3. An activation function for limiting the amplitude of the output of a neuron. 

The neuron may also include an externally applied bias which has the 

effect of increasing or lowering the net input of the activation function, 

depending on whether it is positive or negative, respectively. 

An MLP has three distinctive characteristics [47]: 

1. The model of each neuron in the network includes a nonlinear activation 

function. 

2. The network contains one or more layers of hidden neurons that are not 

part of the input or output of the network. 

3. The network exhibits a high degree of connectivity, determined by the 

synapses of the network. 

In an MLP network the inputs propagate through the network in a forward 

direction, on a layer by layer basis. Global training of the MLP results in a non-linear 

mapping of the inputs at the output layer. The MLP can be described in general as [24] 

1 1

( ) ( )
H I

k kh hi i

h i

y l w w x l                                              (4.28) 

where ky  is the output, ix  is the input, l is the sample number, i is the number of input 

nodes, h is the number of hidden layers and k is the output node index. Here khw  and hiw  
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represent the weight value from neuron h to k and from neuron i to h respectively and  

represents the activation function. All weight values w in the MLP are determined at the 

same time in a single, global (non-linear) training strategy involving supervised learning. 

The activation functions  are monotonic and may vary for different layers of 

neurons. The activation function can be any type of function that fits the action desired 

from the respective neuron and is a design choice which depends on the specific problem. 

Log sigmoid and hyperbolic tangent sigmoid functions are commonly used in multi-layer 

neural networks with a backpropagation algorithm since they are differentiable and can 

form arbitrary nonlinear decision surfaces [48]. The network activation function, , used 

in this work is a log-sigmoid defined as; 

( ) 1/(1 )xx e                                            (4.29) 

In this work a three-layer feed-forward neural network with 2h  hidden layers is 

used. The output layer has 12 neurons each of which corresponds to a modulation type. A 

block diagram of the three-layer feed-forward neural network is shown in Figure 39.  

 

Figure 39.   Block Diagram of Three-Layer Perceptron Neural Network (After [27]). 
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The input feature vector is the preprocessed image as described in the previous 

sections. The feature vector dimension 1D  is determined after several optimizations on 

PCA for each detection method. Several neuron numbers for each of the hidden layers 

( 2h ) are also tested to determine an optimum combination for the selected detection 

type. 

It is shown in [49] that such an architecture can separate classes resulting from 

any union of polyhedral regions. This is performed by forming the hyperplanes in the 

first layer, forming the regions in the second layer and forming the classes in the output 

layer. 

The supervised training of this feed-forward MLP network uses the gradient of 

the performance function to determine how to adjust the weights. The gradient is 

determined using a technique called backpropagation [50]. The backpropagation 

algorithm is a generalization of the least mean square algorithm used for linear networks, 

where the performance index is the mean square error. Basically, a training sequence is 

passed through the multi-layer network, the error between the target output and the actual 

output is computed, and the error is then propagated back through the hidden layers from 

the output to the input in order to update weights and biases in all layers [48]. 

Different modifications of training algorithms may improve the convergence 

speed of the network. One of these modifications is the variable learning rate which is 

also used in this work. With standard steepest descent, the learning rate held constant 

throughout training. The performance of the algorithm is very sensitive to the proper 

setting of the learning rate. The performance of the steepest descent algorithm is 

improved when the learning rate is allowed to change during the training process which is 

a variable learning rate [50]. 

To improve the network generalization, regularization was used. The network 

regularization R was measured using 

(1 )SE SWR gM g M                                               (4.30) 
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where g is a performance ratio ( 0.7g ), SEM is the mean sum of squares of the network 

errors and SWM is the mean sum of squares of the network weights and biases. The 

regularization performance goal was set to 107 10R x . For each training set, several 

training iterations (epochs) are tested to find an optimum value. 

2. RBF Classifier 

Radial basis functions (RBFs) consist of three layer of nodes: the input layer 

where the inputs are applied, the output layer where the outputs are produced, and a 

hidden layer where the RBFs are applied on the input data. RBFs are so named because 

they have radial symmetry. Gaussian functions at the hidden layer with appropriate mean 

and autocovariance matrices are popular choice of RBFs [51]. 

The hidden layer of an RBF neural network (RBFNN) is nonlinear, whereas the 

output layer is linear. The argument of the activation function of each hidden unit 

computes the Euclidean norm (distance) between the input vector and the center of the 

unit. Using exponentially decaying localized nonlinearities, RBFs construct local 

approximations to nonlinear input-output mappings [47]. 

The structure of RBFNN for D-dimensional input and one output is shown in 

Figure 40. 

 

Figure 40.   Block Diagram of Radial Basis Function Neural Network with One Output 

(After [52]). 
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where the input-output relations are implemented as follows [52]:  

1

( ;C; ) ( x )
P

j j

j

F cλ x                                        (4.31) 

where 1,...,j P , x  is the input vector, λ  is the linear weight matrix between the radial 

basis layer and the output layer,  is the radial basis function and C  is a center matrix 

whose columns are the centers of RBFNN with its spread predetermined. These columns 

jc  are also called the center vectors. Note that the center vectors are also the weight 

vectors of the radial basis layer. The radial basis function is given by the Gaussian 

function:  

2

( x )

x c

c e                                                  (4.32) 

where  is the spread of the basis function. The basis function described above indicates 

that the center vectors C  are fixed points in D -dimensional input space. 

In this work two approaches of RBFNNs are used. In the first approach an 

efficient design is implemented by iteratively creating the RBFNN one neuron at a time. 

Neurons are added to the network until the sum-squared error falls beneath an error goal 

or a maximum number of neurons has been reached [50]. 

Two design parameters need to be optimized to obtain a better classification 

probability. These are the goal and spread . The spread constant should be larger than 

the distance between adjacent input vectors, so as to get a good generalization, but 

smaller than the distance across the whole input space [50]. This network is implemented 

in MATLAB using the function newrb. 

In the second approach a probabilistic neural network (PNN) is used which is a 

variant of RBFNN. The radial basis layer of the PNN is identical with the RBFNNs. The 

weight vectors in the radial basis layer of the RBFNN are equal to center vectors 

( 1,..., )jc j P  in radial basis function. Note that P is the node number in the radial basis 

hidden layer [53].  
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The difference between the PNN and the RBFNN is that the nodes in the second 

layer make a sum calculation and form a link with the selective nodes of the first layer. 

The weight matrix λ  is set to the matrix T  of target vectors. Each vector has a one only 

in the row associated with that particular class of input, and zeros elsewhere. The output 

is later found by finding the maximum of ( 1,..., )iy i K  where K  is the total number of 

input classes as shown in Figure 41. 

 

 

Figure 41.   Block Diagram of Probabilistic Neural Network (After [54]). 



 66 

Thus, the network classifies the input vector into a specific one of K classes 

because that class had the maximum probability of being correct [50]. The design 

parameter spread , needs to be optimized for a higher Pcc. This network is 

implemented in MATLAB using the function newpnn. 

Two major differences between RBFNNs and MLP neural networks (MLPNN) 

are [51] 

 RBFs provide a nonzero output for portions of the input space that is 

closely concentrated around the center of RBF while this is not true for the 

activation functions used in the hidden layers of the MLPNN. 

 If the parameters of the RBFs are chosen a priori, then the learning of the 

weights can focus only on the weight parameters converging to the output 

layer of the RBFNN. Hence, the convergence to a solution for such an 

RBFNN can be very fast than the MLP. 

The only disadvantage of RBF network is that the number of weights increases 

exponentially with the number of inputs and outputs. It often requires as many hidden 

nodes as the number of data sets used for learning. This may lead to the problem of being 

overdetermined [52]. 

D. CLASSIFICATION RESULTS 

This section presents the classification results for T-F detection techniques with 

three classifier networks. Using initial network parameters two feature extraction 

parameters, the LPF cutoff frequencies and histogram bin, are optimized. Later using the 

optimum LPF cutoff frequency and histogram bin the PCA network parameters are 

optimized. The simulation is performed with the final optimum values. The optimization 

is performed using the test signals with an SNR of 10 dB. The optimum parameter 

selection is based on the highest average probability of correct classification.  

Two tests were run for each classifier. The first test uses the signals presented in 

Table 1 which are referred as to Test SNR. These signals have the same modulation 

parameters with the signals used for training purpose but their SNR is varied as 

10dB 10 dBSNR .  
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The second test uses the signals shown in Table 2. These signals have different 

modulation parameters from the training signals which are referred as to Test 

Modulation. Note that this test is more important and more difficult than the first test. 

The SNR is also varied as 10dB 10 dBSNR for these signals.  

To build the classification statistics 100 test runs were used. Before each test, 

networks were reinitialized with the optimum network parameters to randomize the 

weight matrices. Two CMs were created for each classification test for each SNR level. 

One of the CMs shows the results for Test SNR and the other shows the results for Test 

Modulation. 

1. Optimization of Feature Extraction and Network Parameters 

a. Optimization for MLPNN 

For each detection technique, first the network is set using initial values 

for the parameters of epochs, number of neurons in the first hidden layer 1S , number of 

neurons in the second hidden layer 2S , eigenvalue selection threshold constant Th and 

eigenvector selection variations i . Once the initial values are set, an optimization is 

performed to determine optimum values for 2-D FFT frequency domain LPF digital 

frequencies 1 2,  (it is selected so that 1 2 ) and histogram bin number. After these 

two values are found and set, another optimization for epochs, 1S , 2S , Th  and i  is 

performed. Once all the values are found and set the classification network is tested.  

For the classification of PWVD images the initial values used are 

0.001Th , 0 , 6000epochs , 1 50S  and 2 50S . Figure 42 shows the average Pcc 

results for five digital frequency ( 1 2, ) values between 0.1  and 0.5  and fourteen 

bin numbers between 5 and 70 for each digital frequency value. Both Test Modulation 

and Test SNR classification results are evaluated. The optimum values are determined as 

1 2 0.1  and 45binnumber .  
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Figure 42.   Optimization of 1 2,  and Bin Number for PWVD image classification 

with MLPNN. 

Using the values 1 2 0.1  and 45binnumber  1S , 2S , Th and i  

are optimized. Figure 43 shows the average Pcc results for three values of eigenvalue 

selection threshold constant Th , four values of eigenvector selection variations i  for 

each Th  value and 10 combinations of hidden layer variations for each i  value. The 

hidden layer combinations are shown in Table 3. This combination set is also used for the 

initialization of MLPNN for CWD and QMFB image classification. 
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Table 3.   Combinations of Neuron Numbers in the Hidden Layers. 

 

 Combination 

Hidden Layers 1 2 3 4 5 6 7 8 9 10 

1S  (# of neurons) 40 40 50 50 60 60 70 70 80 80 

2S  (# of neurons) 35 40 45 50 55 60 65 70 75 80 

 

As shown in Figure 43 the combination 10 gave the optimum result with 

1 80S , 2 80S , 0.001Th  and 1 . Using these parameters the MLPNN is set again 

and the network is tested for five epoch values where 

2000,3000,4000,5000,6000epochs  are used. The best result is obtained with 

5000epochs . Final optimum values for PWVD image classification with MLPNN is 

shown in Table 4. 

Table 4.   Optimum Values for PWVD image classification with MLPNN. 

 

1 2  Bin number 
1S  2S  Th  i  epochs 

0.1  45 80 80 0.001 
1  5000 
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Figure 43.   Optimization of 1S , 2S , Th and i for PWVD image classification with 

MLPNN. 
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For the classification of CWD images the initial values used are 

0.001Th , 0 , 5000epochs , 1 60S  and 2 60S . The optimization charts for the 

rest of the networks are presented in Appendix A, Section A, Figure 69 shows the 

average Pcc results for five digital frequency ( 1 2, ) values between 0.1  and 0.5  

and fourteen bin numbers between 5 and 70 for each digital frequency value for the 

classification of CWD images with MLPNN. The optimum values are determined as 

1 2 0.1  and 15binnumber . 

Using the values 1 2 0.1  and 15binnumber , 1S , 2S , Th and i  

are optimized. Appendix A, Section A, Figure 70 shows the average Pcc results for three 

values of eigenvalue selection threshold constant Th , four values of eigenvector 

selection variations i  for each Th  value and 10 combinations of hidden layer 

variations for each i  value. As shown in Appendix A, Section A, Figure 70 the 

combination 10 gave the optimum result with 1 80S , 2 80S , 0.001Th  and 0 . 

Using these parameters the MLPNN is set again and the network is tested for five epoch 

values where 2000,3000,4000,5000,6000epochs  are used. The best result is obtained 

with 6000epochs . Final optimum values for CWD image classification with MLPNN 

is shown in Table 5. 

Table 5.   Optimum Values for CWD image classification with MLPNN. 

 

1 2  Bin number 
1S  2S  Th  i  epochs 

0.1  15 80 80 0.001 
0  6000 

 

For the classification of QMFB images the initial values used are 

0.001Th , 0 , 5000epochs , 1 60S  and 2 60S . Appendix A, Section A, Figure 

71 shows the average Pcc results for five digital frequency ( 1 2, ) values between 0.4  

and 0.8  and twelve bin numbers between 2 and 24 for each digital frequency value for 

the classification of QMFB images with MLPNN. Note that the digital frequency range 
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for QMFB is different from WVD and CWD and it has higher values. LPF with a small 

cutoff frequency cause very high information losses in the QMFB images. Since QMFB 

images are partially filtered from noise at the output of the filter bank, when the filter 

cutoff frequency is small, the filtering is mostly applied on the modulation information 

within the QMFB image. Another reason is that QMFB images have a small dimension 

which affects the filtering process. Due to the small dimensionality, filtering causes much 

information loss than the PWVD and CWD images which have very high dimensional 

images compared to the QMFB images. As it can be seen from Appendix A, Section A, 

Figure 71 the optimum values are determined as 1 2 0.4  and 18binnumber . 

Using the values 1 2 0.4  and 18binnumber , 1S , 2S , Th and i  

are optimized. Appendix A, Section A, Figure 72 shows the average Pcc results for three 

values of eigenvalue selection threshold constant Th , four values of eigenvector 

selection variations i  for each Th  value and 10 combinations of hidden layer 

variations for each i  value. As shown in Appendix A, Section A, Figure 72 the 

combination 6 gave the optimum result with 1 60S , 2 60S , 0.005Th  and 0 . 

Using these parameters the MLPNN is set again and the network is tested for five epoch 

values where 2000,3000,4000,5000,6000epochs  are used. The best result is obtained 

with 5000epochs . Final optimum values for QMFB image classification with MLPNN 

is shown in Table 6. 

Table 6.   Optimum Values for QMFB image classification with MLPNN. 

 

1 2  Bin number 
1S  2S  Th  i  epochs 

0.4  18 60 60 0.005 
0  5000 

b. Optimization for RBFNN 

For each detection technique, first the network is set using initial values 

for the parameters spread , goal, Th and i . Once the initial values are set, an 

optimization is performed to determine optimum values for 2-D FFT frequency domain 
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LPF digital frequencies 1 2,  (it is selected so that 1 2 ) and histogram bin number. 

After these two values are found and set, another optimization for , goal, Th  and i  

is performed. Once all the values are found and set the classification network is tested. 

For the classification of PWVD images the initial values used are 

0.001Th , 0 , 2000  and 1goal . Appendix A, Section B, Figure 73 shows the 

average Pcc results for five digital frequency ( 1 2, ) values between 0.1  and 0.5  

and fourteen bin numbers between 5 and 70 for each digital frequency value for the 

classification of PWVD images with RBFNN. The optimum values are determined as 

1 2 0.2  and 55binnumber . 

Using the values 1 2 0.2  and 55binnumber  , goal, Th and 

i  are optimized. Appendix A, Section B, Figure 74 shows the average Pcc results for 

three values of eigenvalue selection threshold constant Th , four values of eigenvector 

selection variations i  for each Th  value and 8 values of  between 500 and 4000 for 

each i  value. As shown in Appendix A, Section B, Figure 74 the spread constant 

2000  gave the optimum result with 0.001Th  and 0 . Using these parameters the 

RBFNN is set again and the network is tested for goal values between 0.2 and 2. The best 

result is obtained with 0.9goal . Final optimum values for PWVD image classification 

with MLPNN is shown in Table 7. 

Table 7.   Optimum Values for PWVD image classification with RBFNN. 

 

1 2  Bin number  goal Th  i  

0.2  55 2000 0.9 0.001 
0  

 

For the classification of CWD images the initial values used are 

0.001Th , 0 , 4000  and 1goal . Appendix A, Section B, Figure 75 shows the 

average Pcc results for five digital frequency ( 1 2, ) values between 0.1  and 0.5  
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and fourteen bin numbers between 5 and 70 for each digital frequency value for the 

classification of CWD images with RBFNN. The optimum values are determined as 

1 2 0.5  and 55binnumber . 

Using the values 1 2 0.5  and 55binnumber  , goal, Th and 

i  are optimized. Appendix A, Section B, Figure 76 shows the average Pcc results for 

three values of eigenvalue selection threshold constant Th , four values of eigenvector 

selection variations i  for each Th  value and 8 values of  between 2500 and 6000 for 

each i  value. As shown in Appendix A, Section B, Figure 76 the spread constant 

3500  gave the optimum result with 0.001Th  and 0 . Using these parameters the 

RBFNN is set again and the network is tested for goal values between 0.2 and 2. The best 

result is obtained with 0.9goal . Final optimum values for CWD image classification 

with MLPNN is shown in Table 8. 

Table 8.   Optimum Values for CWD image classification with RBFNN. 

 

1 2  Bin number  goal Th  i  

0.5  55 3500 0.9 0.001 
0  

 

For the classification of QMFB images the initial values used are 

0.001Th , 0 , 30  and 1goal . Appendix A, Section B, Figure 77 shows the 

average Pcc results for five digital frequency ( 1 2, ) values between 0.4  and 0.8  

and 12 bin numbers between 2 and 24 for each digital frequency value for the 

classification of QMFB images with RBFNN. The optimum values are determined as 

1 2 0.6  and 4binnumber . 

Using the values 1 2 0.6  and 4binnumber  , goal, Th and i  

are optimized. Appendix A, Section B, Figure 78 shows the average Pcc results for three 

values of eigenvalue selection threshold constant Th , four values of eigenvector 
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selection variations i  for each Th  value and 14 values of  between 5 and 70 for each 

i  value. As shown in Appendix A, Section B, Figure 78 the spread constant 25  

gave the optimum result with 0.001Th  and 0 . Using these parameters the RBFNN is 

set again and the network is tested for goal values between 0.2 and 2. The best result is 

obtained with 0.8. Final optimum values for QMFB image classification with MLPNN is 

shown in Table 9. 

Table 9.   Optimum Values for QMFB image classification with RBFNN. 

 

1 2  Bin number  goal Th  i  

0.6  4 25 0.8 0.001 
0  

c. Optimization for PNN 

For each detection technique, first the network is set using initial values 

for the parameters spread , Th and i . Once the initial values are set, an optimization 

is performed to determine optimum values for 2-D FFT frequency domain LPF digital 

frequencies 1 2,  (it is selected so that 1 2 ) and histogram bin number. After these 

two values are found and set, another optimization for , Th  and i  is performed. 

Once all the values are found and set the classification network is tested. 

For the classification of PWVD images the initial values used are 

0.001Th , 0  and 50 . Appendix A, Section C, Figure 79 shows the average Pcc 

results for five digital frequency ( 1 2, ) values between 0.1  and 0.5  and fourteen 

bin numbers between 5 and 70 for each digital frequency value for the classification of 

PWVD images with PNN. The optimum values are determined as 1 2 0.2  and 

50binnumber . 

Using the values 1 2 0.2  and 50binnumber  , Th and i  are 

optimized. Appendix A, Section C, Figure 80 shows the average Pcc results for three 

values of eigenvalue selection threshold constant Th , four values of eigenvector 
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selection variations i  for each Th  value and 20 values of  between 10 and 200 for 

each i  value. As shown in Appendix A, Section C, Figure 80 the spread constant 

70  gave the optimum result with 0.001Th  and 0 . Final optimum values for 

PWVD image classification with PNN is shown in Table 10. 

Table 10.   Optimum Values for PWVD image classification with PNN. 

 

1 2  Bin number  Th  i  

0.2  50 70 0.001 
0  

 

For the classification of CWD images the initial values used are 

0.001Th , 0  and 100 . Appendix A, Section C, Figure 81 shows the average Pcc 

results for five digital frequency ( 1 2, ) values between 0.1  and 0.5  and fourteen 

bin numbers between 5 and 70 for each digital frequency value for the classification of 

CWD images with PNN. The optimum values are determined as 1 2 0.3  and 

70binnumber . 

Using the values 1 2 0.3  and 70binnumber  , Th and i  are 

optimized. Appendix A, Section C, Figure 82 shows the average Pcc results for three 

values of eigenvalue selection threshold constant Th , four values of eigenvector 

selection variations i  for each Th  value and 20 values of  between 10 and 200 for 

each i  value. As shown in Appendix A, Section C, Figure 82 the spread constant 

130  gave the optimum result with 0.001Th  and 0 . Final optimum values for 

CWD image classification with PNN is shown in Table 11. 
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Table 11.   Optimum Values for CWD image classification with PNN. 

1 2  Bin number  Th  i  

0.3  70 130 0.001 
0  

 

For the classification of QMFB images the initial values used are 

0.001Th , 0  and 2 . Appendix A, Section C, Figure 83 shows the average Pcc 

results for five digital frequency ( 1 2, ) values between 0.4  and 0.8  and 12 bin 

numbers between 2 and 24 for each digital frequency value for the classification of 

QMFB images with PNN. The optimum values are determined as 1 2 0.8  and 

16binnumber . 

Using the values 1 2 0.8  and 16binnumber  , Th and i  are 

optimized. Appendix A, Section C, Figure 84 shows the average Pcc results for three 

values of eigenvalue selection threshold constant Th , four values of eigenvector 

selection variations i  for each Th  value and 14 values of  between 0.25 and 3.5 for 

each i  value. As shown in Appendix A, Section C, Figure 84 the spread constant 2  

gave the optimum result with 0.005Th  and 0 . Final optimum values for QMFB 

image classification with PNN is shown in Table 12. 

Table 12.   Optimum Values for QMFB image classification with PNN. 

 

1 2  Bin number  Th  i  

0.8  16 2 0.005 
0  

 

The following sections present the test results for the detection and classification 

architecture. The results are presented using two approaches. In the first approach the 

results are presented under a classification network showing the differences between the 

detection techniques and in the second approach the results are presented under a  
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detection technique showing the differences between classification networks. These 

approaches help the comparative relationship to better be seen. Both Test SNR and Test 

Modulation results are shown in charts for each LPI modulation type.  

Test SNR results provide an understanding on the performance of autonomous 

modulation energy isolation and cropping and the performance of noise reduction as well. 

On the other hand Test Modulation results provide an understanding on the performance 

of feature extraction algorithm such as its modulation discriminative ability. 

2. Classification Results with MLPNN 

The classification results for each LPI radar waveform with three detection 

techniques are shown in Figures 44 and 45. The CMs which include more details about 

the MLPNN classification results are presented in Appendix B.A for 

10,6,3,0, 3, 6dBSNR  (Tables 13-30). 

All the detection techniques show similar results on Test SNR case. Most of the 

modulations are classified with more than 80% classification rate for 0dBSNR . There 

is a considerable stability in classification of signals with 0dBSNR . This stability 

states that the autonomous modulation energy isolation and cropping becomes more 

sensitive to noise variations below 0dBSNR . The Pcc of Frank, FSK/PSK, FMCW, 

T1, T2 and T4 modulations with PWVD and CWD techniques exhibit 100% for most of 

the SNR levels above 0 dB.  

Concerning the Test Modulation case, the best results are obtained in the 

classification of FMCW, Costas, FSK/PSK, P2 and T2 modulations while the worst 

results are obtained in the classification of polyphase codes. Note that most of the results 

for Frank, P1, P3 and P4 modulations are below 0.4Pcc . Classification of Costas, 

FSK/PSK, FMCW, P2, P4, T1, T2, T3 and T4 modulations with PWVD and CWD 

techniques exhibit similar results. Overall, the classification results with the PWVD 

technique outperform the other detection techniques. 
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While the QMFB technique performs worse than the other techniques it 

outperforms the other techniques in the classification of T2 and T4 modulations for 

5dBSNR . Recall that the QMFB images have a very low resolution than the PWVD 

and CWD images which becomes a disadvantage for modulation discrimination. 

One interesting result is observed on Costas modulation classification. While the 

Pcc for Test Modulation is 100% with all detection techniques, the Pcc for Test SNR is 

not. This is an unexpected result. It is expected that the Test SNR results to outperform 

the Test Modulation results since the signals used in Test SNR have the same parameters 

with the training signals. In this sense the Test SNR results can be used as a measure of 

reliability. This shows that, although the Costas results seem very good for Test 

Modulation case, they may not be reliable. Concerning that, it can be seen that the 

classification of Costas code is best performed with CWD detection technique for 

4dBSNR . Note also that, it is not necessarily true that the Test Modulation results 

perform better if the Test SNR results perform well. The Pcc for Test Modulation 

depends on the modulation discriminative power of the feature extraction algorithm 

implemented. 
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Figure 44.   Classification Results with MLPNN (Costas, Frank, FSK/PSK, FMCW, 

P1, P2 codes). 
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Figure 45.   Classification Results with MLPNN (P3, P4, T1, T2, T3, T4 codes). 
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3. Classification Results with RBFNN 

The classification results for each LPI radar waveform with three detection 

techniques are shown in Figures 46 and 47. The CMs are presented in Appendix B.B for 

10,6,3,0, 3, 6dBSNR  (Tables 31-48). 

Note that the classification results with RBFNN are not as smooth as in the 

MLPNN case. This is due to the fact that RBFNN has one solution for a test signal which 

does not change from one test to another. For instance, if the first test result is 

0.75Pcc , that continues for all tests. As a result, the Pcc for a modulation type with 

four test signals can be 0,0.25,0.5,0.75or1. Note also that the PNN results exhibit the 

same behavior since it is a variant of RBFNN. 

All the detection techniques show similar results on Test SNR case. Frank, 

FMCW, P2, T1, T2, T3 and T4 modulations are mostly classified with more than 80% 

classification rate for 2dBSNR .The autonomous modulation energy isolation and 

cropping becomes more sensitive to noise variations below 2dBSNR . The FMCW 

modulation is classified with 100% for 4dBSNR , and P2 modulation is classified with 

100% for 5dBSNR  with all detection techniques.  

Concerning the Test Modulation case, the best results are obtained in the 

classification of FMCW, Costas, P1, P2 and T2 modulations while the worst results are 

obtained in the classification of P4, T1 and T3 modulations. The FMCW modulation is 

classified 100% with PWVD detection technique for 10dBSNR  and 100% with 

CWD detection technique for 1dBSNR . The T4 modulation is classified 100% with 

PWVD detection for 2dBSNR . The P2 modulation is classified 100% with CWD 

detection for 3dBSNR . Overall, the classification results with the PWVD technique 

outperform the other detection techniques. 

The QMFB technique performs worse than the other two techniques. However, it 

outperforms the other techniques in the classification of P1 modulation with a 

classification rate above 66%. 
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Figure 46.   Classification Results with RBFNN (Costas, Frank, FSK/PSK, FMCW, 

P1, P2 codes). 
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Figure 47.   Classification Results with RBFNN (P3, P4, T1, T2, T3, T4 codes). 
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4. Classification Results with PNN 

The classification results for each LPI radar waveform with three detection 

techniques are shown in Figures 48 and 49. The CMs are presented in Appendix B.C for 

10,6,3,0, 3, 6dBSNR  (Tables 49-66). 

All the detection techniques show similar results on Test SNR case. The best 

results are obtained in the classification of Frank, FSK/PSK, FMCW, T1, T2 and T4 

modulations. For these modulations the classification rate reaches 100% for 

1dBSNR .The autonomous modulation energy isolation and cropping becomes more 

sensitive to noise variations below 1dBSNR .  

Concerning the Test Modulation case, the best results are obtained in the 

classification of FSK/PSK, FMCW, Costas, P2, T2 and T4 modulations while the worst 

results are obtained in the classification of Frank, P1 and P4 modulations. The FMCW, 

FSK/PSK, Costas and P2 modulations are classified 100% with PWVD detection 

technique for different SNR levels as shown in Figure 48. But note that the Test SNR 

result for Costas and P2 modulations are not stable for the same SNR levels. So the 

results for Test Modulation of Costas and P2 modulations may not be reliable. The 

FMCW modulation is classified 100% for 4dBSNR  and the FSK/PSK modulation is 

classified 100% for 3dBSNR  with CWD detection technique. The T1 modulation is 

classified 66% with CWD detection technique for 4dBSNR . The T2 modulation is 

classified 66% with PWVD detection technique for 5dBSNR  and 66% with QMFB 

detection technique for 1dBSNR . The T4 modulation is classified 66% with CWD 

detection technique for 1dBSNR .  

Overall, the classification results with the PWVD technique outperform the other 

detection techniques. Still the QMFB technique performs worse than the other two 

techniques.  
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Figure 48.   Classification Results with PNN (Costas, Frank, FSK/PSK, FMCW, P1, 

P2 codes). 
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Figure 49.   Classification Results with PNN (P3, P4, T1, T2, T3, T4 codes). 
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5. Classification Results using PWVD 

The classification results for each LPI radar waveform with three classification 

networks are shown in Figures 50 and 51. The CMs are presented in Appendix B.A, B.C 

for 10,6,3,0, 3, 6dBSNR  (Tables 13-18, 31-36, 49-54). 

All the classification networks show similar results on Test SNR case. The best 

results are obtained in the classification of Frank, FSK/PSK, FMCW, T1, T2, T3 and T4 

modulations. For these modulations stable classification regions can be identified as 

shown in Figures 50 and 51. Note that the classification results for Costas, P1, P2, P3 and 

P4 modulations are unstable which informs that the Test Modulation results may be 

unreliable. 

Concerning the Test Modulation case, the best results are obtained in the 

classification of FSK/PSK, FMCW, Costas, P2, T2 and T4 modulations while the worst 

results are obtained in the classification of Frank, P1, P4, T1 and T3 modulations. The 

Costas, FMCW, FSK/PSK and P2 modulations are classified 100% with PNN for 

7dBSNR . But note that the Test SNR results for Costas and P2 modulations indicate 

that the Test Modulation results may not be reliable. The FMCW modulation is classified 

100% for 8dBSNR  with all classification networks. The FSK/PSK modulation is 

classified 100% for 7dBSNR  with PNN and classified above 66% for 2dBSNR  

with MLPNN. The T2 modulation is classified 66% with all three networks for 

3dBSNR . The T4 modulation is classified 100% with RBFNN for 2dBSNR . 

Overall, the classification results with radial basis function based networks 

outperform the MLP network. Among the radial basis function based networks, PNN 

exhibits better results than RBFNN. 
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Figure 50.   Classification Results using PWVD (Costas, Frank, FSK/PSK, FMCW, 

P1, P2 codes). 
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Figure 51.   Classification Results using PWVD (P3, P4, T1, T2, T3, T4 codes). 
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6. Classification Results Using CWD  

The classification results for each LPI radar waveform with three classification 

networks are shown in Figures 52 and 53. The CMs are presented in Appendix B.A, B.C 

for 10,6,3,0, 3, 6dBSNR  (Tables 19-24, 37-42, 55-60). 

For the CWD images all the classification networks show similar results on Test 

SNR case. The best results are obtained in the classification of Frank, FSK/PSK, FMCW, 

T1, T2, and T4 modulations. For these modulations stable classification regions can be 

identified as shown in Figures 52 and 53. Note that the classification results for Costas, 

P1, P2, P3, P4 and T3 modulations are unstable which informs that the Test Modulation 

results may be unreliable. 

The results of the Test Modulation case indicates that the classification results of 

FSK/PSK, FMCW, Costas, P2, T2 and T4 modulations are better than the classification 

results of Frank, P1, P4, T1 and T3 modulations. The Costas, FMCW, FSK/PSK and P2 

modulations are classified 100% with PNN and RBFNN for different SNR levels as 

shown in Figure 52. For Costas modulation a reliable classification region can be defined 

for 4dBSNR  with MLPNN and for P2 modulation a reliable classification region can 

also be defined for 4dBSNR  with RBFNN. The T1 and T2 modulations are classified 

above 60% with MLPNN for 1dBSNR . Overall, the classification results with radial 

basis function based networks outperform the MLP network. The PNN and the RBFNN 

results are very similar.  
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Figure 52.   Classification Results using CWD (Costas, Frank, FSK/PSK, FMCW, P1, 

P2 codes). 
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Figure 53.   Classification Results using CWD (P3, P4, T1, T2, T3, T4 codes). 
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7. Classification Results using QMFB 

The classification results for each LPI radar waveform with three classification 

networks are shown in Figures 54 and 55. The CMs are presented in Appendix B.A, B.C 

for 10,6,3,0, 3, 6dBSNR  (Tables 25-30, 43-48, 61-66). 

For the Test SNR case the best results are obtained in the classification of Frank, 

FSK/PSK, P2, P3, T1, T2, T3 and T4 modulations for 4dBSNR . FMCW modulation 

also gives good result for 4dBSNR  with MLPNN and PNN. Concerning the Test 

Modulation case, for most of the modulations the classification results are very poor. 

None of the classifiers improves the classification results significantly.  

The results indicate that the QMFB images could not provide class distinctive 

information when the T-F feature extraction algorithm defined in this work is applied. 

One of the reasons for this problem is the QMFB image resolution. The QMFB images 

had small dimensions and due to this fact they did not contain as much class distinctive 

information as PWVD and CWD images.  
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Figure 54.   Classification Results using QMFB (Costas, Frank, FSK/PSK, FMCW, 

P1, P2 codes). 
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Figure 55.   Classification Results using QMFB (P3, P4, T1, T2, T3, T4 codes). 
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E. SUMMARY 

The autonomous detection and classification algorithms used in this work are 

described. The detection techniques include the Wigner-Ville distribution, the Choi-

Williams distribution and quadrature mirror filter bank. An autonomous image cropping 

and feature extraction algorithm based on two dimensional Fast Fourier Transform (2-D 

FFT) and PCA is presented. MLPNN, RBFNN and PNN are described as the non-linear 

classifiers used in this work. The simulation results of classification networks are 

presented. 

The next chapter presents the two parameter extraction algorithms investigated. 

First one is designed to extract the parameters from the PWVD images of polyphase 

coded LPI signals using the Radon transform of the PWVD images and the second one is 

designed to extract the parameters from the CWD images of polyphase coded LPI signals 

using frequency domain lowpass filter on the 2-D FFT of CWD images. The algorithms 

are tested with the polyphase signals shown in Table 1 and Table 2 and the results are 

also presented. 
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V. PARAMETER EXTRACTION ALGORITHMS 

Parameter extraction is the last phase of autonomous LPI signal detection and 

classification algorithm. Once the signal modulation is identified the parameters of the 

signal should be extracted to counter attack the transmitting systems. 

In this work two parameter extraction algorithms are investigated. The first 

algorithm extracts the parameters of polyphase coded LPI modulations (Frank, P1, P2, 

P3, P4) using the PWVD images. The second algorithm extracts the parameters of 

polyphase coded LPI modulations using the CWD images. The extracted parameters are 

the carrier frequency cf , bandwidth B , code period T , code length cN  and cycles of the 

carrier frequency per subcode cpp . 

The illustrations presented in this section are based on a Frank coded signal with 

cN 36 subcodes, a carrier frequency of 1cf 495 Hz with a sampling frequency of 

7sf  kHz at an SNR level of 0 dB. With the number of carrier frequency cycles within 

a subcode of 1cpp , the transmitted bandwidth / 1495 HzcB f cpp  and the code 

period is 24.1msT . 

A. PARAMETER EXTRACTION OF POLYPHASE CODED LPI RADAR 

MODULATIONS USING PWVD IMAGES 

The parameter extraction algorithm for polyphase coded LPI radar waveforms 

using PWVD images is shown in Figure 56.  
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Figure 56.   Parameter Extraction Block Diagram for Polyphase Coded LPI Radar 

Waveforms using PWVD Images (From [28]). 

The algorithm carrier frequency cf  is extracted directly from the PWVD image 

without any pre-processing. This is performed by finding the location of the maximum 

intensity level in the image. The corresponding frequency at this location gives cf  [28]. 

This is illustrated in Figure 57 on a grayscale PWVD image. Note that with the PWVD, 

this maximum sometimes occurs at a cross term but not all the times. 
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Figure 57.   Carrier Frequency Determination by Finding the Maximum Intensity 

Level for PWVD. 

In order to extract the code length T  and bandwidth B  the Radon transform of 

the image is computed [28]. The Radon transform is the projection of the image intensity 

along a radial line oriented at a specific angle. It transforms a 2-D image with lines (line-

trends) into a domain of the possible line parameters  and , where  is the smallest 

distance from the origin and  is its angle with the x-axis. In this form, a line is defined 

as [55]. 

cos sinx y                                                (5.1) 

Using this definition of a line, the Radon transform of a 2-D image ( , )f x y  can 

then be defined as follows 
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( , ) ( cos sin , sin cos )R f s s ds                      (5.2) 

where the s-axis lies along the line perpendicular to  as shown in Figure 58. Here s can 

be calculated from 

cos sins y x                                                  (5.3) 

Note  and s can be calculated from x, y and  using equations (5.1) and (5.3). 

 

Figure 58.   Geometry of the Radon Transform (From [56]). 

In this work the projection of the images are computed as line integrals from 

multiple sources along parallel paths in a certain direction. The beams are spaced 1 pixel 

unit apart. This is illustrated in Figure 59 for a single projection at a specified rotation 

angle  [56]. 
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Figure 59.   Parallel Beam Projection at Rotation Angle  (From [56]). 

Figure 60 shows the grayscale PWVD image illustrating the extraction goal for 

the bandwidth and the code period. The algorithm aims to measure the indicated regions 

by implementing the Radon transform to find  and d. Here d is the distance between 

consecutive linear energy lines of the modulation at angle . To prevent confusion the 

angle  which is equal to the slope of the modulation energy lines will be referred as s  

for the rest of the section. The expectation is to obtain maximum intensity levels in the 

transformed image at angle s . Once s  and d is determined, B and T can be calculated 

using geometrical relations as shown below [28]. 
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Figure 60.   Radon Transform Geometry on PWVD image (From [28]). 

The Radon transform is implemented so that the parallel-beam projections of the 

image are taken between [0 ,179 ] . Once the transform is completed it is normalized 

[28]. The normalized radon transform of the PWVD image is shown in Figure 61 on a 

contour plot. 
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Figure 61.   Normalized Radon Transform of a PWVD Image. 

In some cases the maximum intensity on the transform may occur around 90  

which corresponds to the MFD. Since we do not want to detect the angle corresponding 

to the MFD, we assume that the slope of linear energy lines are not between 10  and 

10  and the projections on angles between [80 ,100 ]  are masked, and set to zero. 

After masking, the location of the maximum intensity level of the transform is found. The 

corresponding projection angle at this location gives s  [28].  

Once s  is found the projection at angle s  is cropped from the masked Radon 

transform and a projection vector is obtained. Figure 62 illustrates the cropping of the 

projection at angle s  from the masked Radon transform. 
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Figure 62.   Radon Transform and Projection Vector Cropping on an Angle s  (From 

[28]). 

From Figure 62 the number of modulation energy lines contained in the WVD 

image can easily be detected from both the Radon transform and the projection vector at 

angle s . The ripples between each modulation energy component correspond to the 

noise and cross term integration at angle s . As noise increases, these ripples also 

increase. High levels of noise may affect the thresholding process described below. Due 

to this fact the projection vector is smoothed with an adaptive filter using the same 

algorithm as in the T-F autonomous cropping and feature extraction algorithm described 

previously in section Chapter IV-B-1. A local neighborhood of 10  is used in the 

adaptive filter [28]. 

Following smoothing, the projection vector is thresholded with a threshold equal 

to one half of the maximum value of the projection vector. Figure 63 (a) shows the 

filtered projection vector and Figure 63 (b) shows the thresholded projection vector after 

filtering. 
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(a)         (b) 

Figure 63.   (a) Filtered Projection Vector (b) Thresholded Projection Vector after 

Filtering (From [28]). 

After thresholding the distances can be found between the nonzero values in the 

projection vector which correspond to the consecutive modulation energy components. 

Several distances can be found between consecutive modulation energy components. And 

the final distance d can be determined by finding the mean value of these distances. 

Recall Figure 60 , once d is found the code period can also be found using the relation 

[28] 

1

sin( )
2

s
s

d
T

f
                                                   (5.4) 

and the bandwidth can be found using the relation 

/ tan( )

sin( )
2

s

s

d
B f                             (5.5) 
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where f  is the frequency resolution of the PWVD image. Note that (5.4) and (5.5) are 

not applied to P2 coded signals since it has an opposite slope. For P2 coded signals the 

following relations apply:  

1

coss

d
T

f
                                                       (5.6) 

/ tan
cos

d
B f                                             (5.7) 

Once cf , T  and B  are obtained the code length cN  can be obtained using the 

relation cN T B  and the cycles of the carrier frequency per subcode cpp  can be 

obtained using the relation /ccpp f B . 

B. PARAMETER EXTRACTION OF POLYPHASE CODED LPI RADAR 

MODULATIONS USING CWD IMAGES 

The parameter extraction algorithm for polyphase coded LPI radar modulations 

using CWD images is shown in Figure 64.  
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Figure 64.   Parameter Extraction Block Diagram for polyphase coded LPI radar 

modulations using CWD images. 

Similar to the PWVD parameter extraction algorithm, Figure 65 shows the carrier 

frequency cf  extracted directly from the CWD image without any pre-processing. This is 

also performed by finding the location of the maximum intensity level in the image. The 

corresponding frequency at this location gives cf . This is illustrated in Figure 65. 
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Figure 65.   Carrier Frequency Determination by Finding the Maximum Intensity 

Level for CWD. 

The goal behind the extraction of the bandwidth and the code period from the 

image can be recalled from Figure 16. The algorithm aims to measure the indicated 

regions in Figure 16. 

In order to extract the code length T  and bandwidth B , several pre-processing 

operations are performed on the image. First step is to detect and delete the region where 

no signal is present. Followed by the deletion of the no-signal region, the image is 

lowpass filtered (LPF). These two steps are performed as in the T-F autonomous 

cropping and feature extraction algorithm described previously in this work. Here 

1 2 0.2  is used in the frequency domain LPF. 

Following the lowpass filtering, an absolute value operation is performed on the 

image and the intensity values are scaled to the range [0,1] which is shown as the Gray 

scaling block.  
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The image is later enhanced using a sharpening filter. The sharpening filter can be 

obtained from the negative of the Laplacian filter with parameter . The parameter  

controls the shape of the Laplacian which allows fine tuning of the enhancement results. 

The parameter  must be in the range [0,1] and in this work 0.2  is used. 

Enhancement using the negative of the Laplacian filter is based on the equation 

[41]  

2( , ) ( , ) [ ( , )]g x y f x y f x y                                        (5.8) 

where ( , )f x y  is the input image and ( , )g x y  is the sharpened image. 

The negative Laplacian of an image 2 f  can be implemented at all points (x,y) 

in an image by convolving the image with the following spatial mask m [41];  

1
1

1 5 1
1

1

m                                          (5.9) 

Figure 52 (a) shows the enhanced image in a gray scale plot and Figure 52 (b) shows the 

enhanced image in a contour plot following the low pass filtering. 
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(a)       (b) 

Figure 66.   (a)  Gray Scale Plot of Enhanced Image after LPF (b)  Contour Plot of 

Enhanced Image after LPF. 

The CWD may generate high energy regions at the edges of the time axis. These 

regions affect an accurate time marginal calculation. Without affecting the overall image 

and the algorithm the first and the last 5 time indices are masked. That is, the intensity 

values within these regions are set to zero. 

After the time masking, the algorithm follows two directions. One of the 

directions lead to the extraction of the code period and the other leads to the extraction of 

the bandwidth. In order to extract the code period a time slice is cut from the time masked 

image at cf f and the later operations are performed on this time slice vector. The goal 

of time slice cropping is to find the peak values where the distance between the peak 

values provide the code period. This operation is illustrated in Figure 53. 
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(a)       (b) 

Figure 67.   (a)  Time Slice Cropping  (b)  Time Slice Vector. 

The time slice vector is smoothed using the same algorithm as in the T-F 

autonomous cropping and feature extraction algorithm described previously in section 

Chapter IV.B.1. A local neighborhood of 10  is used in the adaptive filter and a 

window length of 5m  is used in the moving average filter. Figure 54 shows the 

smoothed time slice vector vs. original time slice vector. Note that due to the low pass 

filtering the effect of smoothing is very slight. But since the ripples caused by noise are 

expected to be high at low SNR levels smoothing acts as a buffer which offers stability to 

the thresholding operation. 
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Figure 68.   Smoothed Time Slice Vector. 

Followed by the smoothing operation a histogram of 100 bins is generated. Using 

this histogram bins a threshold is determined as described in the T-F autonomous 

cropping and feature extraction algorithm previously. The value corresponding to the 35
th

 

bin is used as the threshold. Once the threshold is determined, the values below the 

threshold are set to zero. The obtained vector provides nonzero values grouped around 

the center of code periods. Since thresholding may result in gaps within a group of 

nonzero values another average filtering is applied to this vector. The aim is to obtain 

continuous zero sections between the nonzero groups, which will provide a code period 

measurement. Later using the nonzero groups and the zero sections an average code 

period is obtained as described in the previous section. This is illustrated in Figure 55. 



 115 

 

Figure 69.   Thresholded Time Slice Vector. 

The bandwidth measurement is very close to the technique used in the T-F 

autonomous cropping and feature extraction algorithm previously to obtain the frequency 

band of interest. First the marginal frequency distribution (MFD) is found. MFD is 

smoothed using a local neighborhood of 10  in the adaptive filter and a window 

length of 20m  in the moving average filter. Followed by the smoothing operation a 

histogram of 100 bins is generated and the value corresponds to the 20
th
 bin is used as the 

threshold. After the determination of the threshold the values below the threshold are set 

to zero. The frequency band found between the first and last nonzero value is expected to 

provide the bandwidth. Figure 56 shows the steps to obtain the bandwidth. 
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Figure 70.   Bandwidth Extraction after Smoothing and Thresholding the MFD. 

Once cf , T  and B  are obtained, the code length cN  can be obtained using the 

relation cN TxB  and the cycles of the carrier frequency per subcode cpp  can be 

obtained using the relation /ccpp f B . 
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C. PARAMETER EXTRACTION TEST RESULTS 

The results of the parameter extraction algorithms are presented in Appendix C.A 

and C.B. Tables 67 through 74 include the actual parameters used to generate the 

polyphase signals, the extracted parameters by using the algorithms and the absolute 

value of the relative error which is denoted as error. If a* is a measurement value of a 

quantity whose exact value is a, then the absolute value of the relative error r  is defined 

by [2]  

* Error

True value
r

a a

a
                                       (5.10) 

Both algorithms designed to extract the parameters of polyphase coded LPI 

modulations (Frank, P1, P2, P3, P4). The testing signals include all the Frank, P1, P2, P3 

and P4 signals presented in Tables 1-2 at SNR levels of 6 dB, 0dB, -3dB and -6dB. The 

results are presented both in detailed tables (Appendix C.A, B) and in error charts 

(Appendix C.C). The extraction results from CWD images are denoted as CWD and the 

extraction results from PWVD images are denoted as PWVD on the error charts. Error 

charts are obtained for SNR levels of 6 dB, 0dB, -3dB for each parameter extracted. The 

signal parameters corresponding to the signal number shown in error charts can be found 

in Appendix C.A and C.B Tables 67 through 74. 

The test results for Frank signals are presented below. The test results show that 

both algorithms provide very similar results and both algorithms have reasonably small 

errors. The carrier frequency error is very small for all SNR levels and for both 

algorithms. Note that if the frequency resolution of the PWVD and CWD images are 

increased the carrier frequency error may decrease.  

The number of subcode error is related to T  and B  since cN  is found using the 

relation cN T B , and cycles per subcode error is related to the cf  and B  since cpp  is 

found using the relation /ccpp f B . Note that the high cycles per subcode error for the 

first signal at 3dBSNR  in Figure 73. Although the carrier frequency error is very 
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small; the bandwidth error increases the cycles per subcode error dramatically. For the 

Frank code overall results show that the error rate slightly increases with the decrease in 

the SNR.  

 

Figure 71.   Carrier Frequency Error for Frank Code. 

 

 

 

Figure 72.   Number of Subcode Error for Frank Code. 
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Figure 73.   Cycles per Subcode Error for Frank Code. 

 

 

 

Figure 74.   Code Period Error for Frank Code. 
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Figure 75.   Bandwidth Error for Frank Code. 

The parameter extraction test results for P1, P2, P3 and P4 codes are presented for 

PWVD images in Appendix C.A and for CWD images in Appendix C.B. The error charts 

providing comparison between two approaches are presented in Appendix C.C.  

The overall error rates are reasonably small. The carrier frequency error slightly 

increases from 6dBSNR  to 3dBSNR . The bandwidth and code period extraction 

results from PWVD images exhibit several high error rates for P1, P2 and P3 codes at 

0 and 3dBSNR SNR . This exhibits one of the drawbacks of the algorithm. As the 

SNR level decrease below 0 dB the maximum intensity level occurs at a very small 

projection angle s . This corresponds to the marginal time distribution and produce 

erroneous results. 

The CWD parameter extraction algorithm slightly outperforms the PWVD 

algorithm as the SNR decreases. The results obtained from both algorithms tend to 

coincide well with the actual values and the relative error depends on how closely results 

are examined. Note also that the PWVD algorithm is not affected from the cross terms 

present within the PWVD images. 
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D. SUMMARY 

Two parameter extraction algorithms are investigated. First one is designed to 

extract the parameters from the PWVD images of polyphase coded LPI signals (Frank, 

P1, P2, P3, P4) based on the Radon transform of the PWVD images. The second 

algorithm is designed to extract the parameters from the CWD images of polyphase 

coded LPI signals (Frank, P1, P2, P3, P4) using frequency domain lowpass filter on the 

2-D FFT of CWD images. 

The algorithms are tested with the Frank, P1, P2, P3 and P4 signals presented in 

Tables 1-2 at SNR levels of 6 dB, 0dB, -3dB and -6dB. 

The next chapter presents the conclusion of this thesis and recommendations for 

further research. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

In this thesis an autonomous detection and classification architecture was 

investigated. The architecture contained T-F detection techniques which provide image 

outputs of LPI radar waveforms. A diverse database was generated including twelve LPI 

modulation techniques each having 21 SNR levels. The use of T-F detection techniques 

provides an efficient method for the extraction of a composite feature vector to classify 

LPI modulations. An autonomous image cropping and feature extraction algorithm based 

on 2-D FFT and PCA was applied to the T-F images. The extracted features were used as 

input to a non-linear classifier. In this work an MLPNN, an RBFNN and a PNN were 

used as classifiers.  

The feature extraction and network parameter optimization work showed that 

there is not a unique solution for each detection technique or each classifier concerning 

the optimum parameters. Each variable used within the algorithms need to be optimized 

for the best result. For MLPNN, it is shown that the classification performance has 

increased as the number of hidden layer neurons was increased. 

Applying the PCA, the high dimensional feature vectors can be reduced to a 

smaller dimensional feature vector by preserving most of their information. In this work, 

the training matrix and feature vectors of testing signals were reduced in dimension 

successfully by applying the PCA. This prevents the classifiers to be overwhelmed by the 

complexity of high dimensional feature vectors. In this way the need for resizing the T-F 

images to a smaller dimension to generate the feature vector can be eliminated. An 

optimization is also applied in order to analyze the amount of principal components 

needed for the best classification rate. The concern arises from the fact that the minor 

components do not necessarily consist of noise and they may contain important 

information. The results showed that for PWVD and CWD images the use of minor 

components improve the classification results.  

Concerning the Test Modulation results, the best overall classification result is 

achieved with PWVD technique. This might be due to the presence of the cross-terms 
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within the PWVD images. Since cross-terms may preserve additional information about 

the modulation type, they might have improved the classification results. CWD results 

were very similar to PWVD results. QMFB technique on the other hand performed very 

poorly. The choice of a particular QMFB layer which determines the dimension of the 

QMFB image influences the results significantly. The smaller dimensional images are 

expected to contain less class distinctive information. The Test SNR results were very 

promising indicating that the autonomous modulation energy isolation and cropping 

performed well. 

Concerning the classifier performances, the PNN outperformed the RBFNN and 

MLPNN. The training and classification speed is also one of the most important 

considerations. The PNN and the RBFNN outperformed the MLPNN concerning the 

training and classification speed. The classification results of polyphase modulations 

(Frank, P1, P2, P3 and P4) were poor. The architecture could not perform to distinguish 

between polyphase modulations successfully. On the other hand the best results were 

obtained in the classification of the FMCW, Costas, FSK/PSK, P2 and T4 modulations. 

These modulations have distinctive T-F images which makes the classification process 

simpler.  

Following the detection and classification algorithm two parameter extraction 

algorithms were investigated. First one was designed to extract the parameters from the 

PWVD images of polyphase coded LPI signals (Frank, P1, P2, P3, P4) based on the 

Radon transform of the PWVD images. The second algorithm was designed to extract the 

parameters from the CWD images of polyphase coded LPI signals (Frank, P1, P2, P3, P4) 

using frequency domain lowpass filter on the 2-D FFT of CWD images. The results 

obtained from both algorithms tend to coincide well with the actual values and the 

relative error depends on how closely results are examined. At 3dBSNR  the PWVD 

parameter extraction algorithm gave erroneous results, while the CWD parameter 

extraction algorithm still gave reasonable results. The PWVD parameter extraction 

algorithm performs without being affected from the cross terms present within the 

PWVD images. 
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In order to enhance the feature extraction and classification algorithm and to 

increase its robustness and reliability, there are still some issues that should be addressed. 

Future efforts may include expanding the database of LPI CW radar modulations. The 

training matrix may be increased in dimension in order to include more diverse 

parameters. The optimization process might be conducted in more detail. The use of bi-

frequency detection techniques may also be investigated for LPI waveform classification 

and parameter extraction. Other feature extraction methods might be investigated such as 

Fisher Linear Discriminant Analysis which might improve the extraction of class 

discriminating information better. The information theoretic feature selection algorithms 

might also be investigated to select the best features from a potential feature set of a T-F 

image. The performance of other classification networks such as self-organizing 

networks and adaptive resonance networks might also be investigated. 
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APPENDIX A. 

A. INITIALIZATION OF MLPNN 

 

Figure 76.   Optimization of 1 2,  and Bin Number for CWD image classification 

with MLPNN. 
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Figure 77.   Optimization of 1S , 2S , Th and i for CWD image classification with 

MLPNN. 
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Figure 78.   Optimization of 1 2,  and Bin Number for QMFB image classification 

with MLPNN (Test Modulation Results). 
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Figure 79.   Optimization of 1S , 2S , Th and i for QMFB image classification with 

MLPNN. 
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B. INITIALIZATION OF RBFNN 

 

Figure 80.   Optimization of 1 2,  and Bin Number for PWVD image classification 

with RBFNN. 
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Figure 81.   Optimization of , Th and i for PWVD image classification with 

RBFNN 
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Figure 82.   Optimization of 1 2,  and Bin Number for CWD image classification 

with RBFNN (Test Modulation Results). 
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Figure 83.   Optimization of , Th and i for CWD image classification with 
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RBFNN 

 

 

Figure 84.   Optimization of 1 2,  and Bin Number for QMFB image classification 

with RBFNN (Test Modulation Results). 
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Figure 85.   Optimization of , Th and i for QMFB image classification with 
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RBFNN 

C. INITIALIZATION OF PNN 

 

 
 

Figure 86.   Optimization of 1 2,  and Bin Number for PWVD image classification 

with PNN (Test Modulation Results). 
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Figure 87.   Optimization of , Th and i for PWVD image classification with PNN. 



 139 

 

 

Figure 88.   Optimization of 1 2,  and Bin Number for CWD image classification 

with PNN (Test Modulation Results). 
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Figure 89.   Optimization of , Th and i for CWD image classification with PNN. 
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Figure 90.   Optimization of 1 2,  and Bin Number for QMFB image classification 

with PNN (Test Modulation Results). 
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Figure 91.   Optimization of , Th and i for QMFB image classification with PNN. 
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APPENDIX B. 

A. MLPNN CLASSIFICATION CONFUSION MATRICES  

Table 13.   PWVD Classification Results with MLPNN ( 10dBSNR ). 

 

Table 14.   PWVD Classification Results with MLPNN ( 6dBSNR ). 
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Table 15.   PWVD Classification Results with MLPNN ( 3dBSNR ). 

 

 

Table 16.   PWVD Classification Results with MLPNN ( 0dBSNR ). 
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Table 17.   PWVD Classification Results with MLPNN ( 3dBSNR ). 

 

 

Table 18.   PWVD Classification Results with MLPNN ( 6dBSNR ). 
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Table 19.   CWD Classification Results with MLPNN ( 10dBSNR ). 

 

 

Table 20.   CWD Classification Results with MLPNN ( 6dBSNR ). 
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Table 21.   CWD Classification Results with MLPNN ( 3dBSNR ). 

 

 

Table 22.   CWD Classification Results with MLPNN ( 0dBSNR ). 
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Table 23.   CWD Classification Results with MLPNN ( 3dBSNR ). 

 

 

Table 24.   CWD Classification Results with MLPNN ( 6dBSNR ). 
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Table 25.   QMFB Classification Results with MLPNN ( 10dBSNR ). 

 

 

Table 26.   QMFB Classification Results with MLPNN ( 6dBSNR ). 
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Table 27.   QMFB Classification Results with MLPNN ( 3dBSNR ). 

 

 

Table 28.   QMFB Classification Results with MLPNN ( 0dBSNR ). 
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Table 29.   QMFB Classification Results with MLPNN ( 3dBSNR ). 

 

 

Table 30.   QMFB Classification Results with MLPNN ( 6dBSNR ). 
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B. RBFNN CLASSIFICATION CONFUSION MATRICES 

Table 31.   PWVD Classification Results with RBFNN ( 10dBSNR ). 

 

 

Table 32.   PWVD Classification Results with RBFNN ( 6dBSNR ). 
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Table 33.   PWVD Classification Results with RBFNN ( 3dBSNR ). 

 

 

Table 34.   PWVD Classification Results with RBFNN ( 0dBSNR ). 
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Table 35.   PWVD Classification Results with RBFNN ( 3dBSNR ). 

 

 

Table 36.   PWVD Classification Results with RBFNN ( 6dBSNR ). 
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Table 37.   CWD Classification Results with RBFNN ( 10dBSNR ). 

 

 

Table 38.   CWD Classification Results with RBFNN ( 6dBSNR ). 
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Table 39.   CWD Classification Results with RBFNN ( 3dBSNR ). 

 

 

Table 40.   CWD Classification Results with RBFNN ( 0dBSNR ). 
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Table 41.   CWD Classification Results with RBFNN ( 3dBSNR ). 

 

 

Table 42.   CWD Classification Results with RBFNN ( 6dBSNR ). 
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Table 43.   QMFB Classification Results with RBFNN ( 10dBSNR ). 

 

 

Table 44.   QMFB Classification Results with RBFNN ( 6dBSNR ). 
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Table 45.   QMFB Classification Results with RBFNN ( 3dBSNR ). 

 

 

Table 46.   QMFB Classification Results with RBFNN ( 0dBSNR ). 
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Table 47.   QMFB Classification Results with RBFNN ( 3dBSNR ). 

 

 

Table 48.   QMFB Classification Results with RBFNN ( 6dBSNR ). 
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C. PNN CLASSIFICATION CONFUSION MATRICES 

Table 49.   PWVD Classification Results with PNN ( 10dBSNR ). 

 

 

Table 50.   PWVD Classification Results with PNN ( 6dBSNR ). 
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Table 51.   PWVD Classification Results with PNN ( 3dBSNR ). 

 

 

Table 52.   PWVD Classification Results with PNN ( 0dBSNR ). 
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Table 53.   PWVD Classification Results with PNN ( 3dBSNR ). 

 

 

Table 54.   PWVD Classification Results with PNN ( 6dBSNR ). 
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Table 55.   CWD Classification Results with PNN ( 10dBSNR ). 

 

 

Table 56.   CWD Classification Results with PNN ( 6dBSNR ). 
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Table 57.   CWD Classification Results with PNN ( 3dBSNR ). 

 

 

Table 58.   CWD Classification Results with PNN ( 0dBSNR ). 
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Table 59.   CWD Classification Results with PNN ( 3dBSNR ). 

 

 

Table 60.   CWD Classification Results with PNN ( 6dBSNR ). 
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Table 61.   QMFB Classification Results with PNN ( 10dBSNR ). 

 

 

Table 62.   QMFB Classification Results with PNN ( 6dBSNR ). 

 

 

 



 168 

Table 63.   QMFB Classification Results with PNN ( 3dBSNR ). 

 

 

Table 64.   QMFB Classification Results with PNN ( 0dBSNR ). 
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Table 65.   QMFB Classification Results with PNN ( 3dBSNR ). 

 

 

Table 66.   QMFB Classification Results with PNN ( 6dBSNR ). 
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APPENDIX C. 

A. PARAMETER EXTRACTION RESULTS FOR POLYPHASE CODED LPI 

MODULATIONS USING PWVD IMAGES 

Table 67.   Original Parameters vs. Extracted Parameters (SNR = 6 dB). 
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Table 68.   Original Parameters vs. Extracted Parameters (SNR = 0 dB). 
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Table 69.   Original Parameters vs. Extracted Parameters (SNR = -3 dB). 
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Table 70.   Original Parameters vs. Extracted Parameters (SNR = -6 dB). 
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B. PARAMETER EXTRACTION RESULTS FOR POLYPHASE CODED LPI 

MODULATIONS USING CWD IMAGES 

Table 71.   Original Parameters vs. Extracted Parameters (SNR = 6 dB). 
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Table 72.   Original Parameters vs. Extracted Parameters (SNR = 0 dB). 
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Table 73.   Original Parameters vs. Extracted Parameters (SNR = -3 dB). 
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Table 74.   Original Parameters vs. Extracted Parameters (SNR = -6 dB). 
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C. COMPARATIVE PARAMETER EXTRACTION RESULTS 

1. Results for P1 Code 

 

 

Figure 92.   Carrier Frequency Error for P1 Code. 

 

 

 

 

Figure 93.   Number of Subcode Error for P1 Code. 
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Figure 94.   Cycles per Subcode Error for P1 Code. 

 

 

 

 

Figure 95.   Code Period Error for P1 Code. 
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Figure 96.   Bandwidth Error for P1 Code 

 

2. Results for P2 Code 

 

 

Figure 97.   Carrier Frequency Error for P2 Code. 
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Figure 98.   Number of Subcode Error for P2 Code. 

 

 

 

Figure 99.   Cycles per Subcode Error for P2 Code. 
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Figure 100.   Code Period Error for P2 Code. 

 

 

 

Figure 101.   Bandwidth Error for P2 Code. 
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3. Results for P3 Code 

 

Figure 102.   Carrier Frequency Error for P3 Code. 

 

 

 

Figure 103.   Number of Subcode Error for P3 Code. 
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Figure 104.   Cycles per Subcode Error for P3 Code. 

 

 

 

Figure 105.   Code Period Error for P3 Signal. 

 

 



 186 

 

 

Figure 106.   Bandwidth Error for P3 Code. 

 

4. Results for P4 Code 

 

 

Figure 107.   Carrier Frequency Error for P4 Code. 
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Figure 108.   Number of Subcode Error for P4 Code. 

 

 

 

Figure 109.   Cycles per Subcode Error for P4 Code. 
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Figure 110.   Code Period Error for P4 Code. 

 

 

 

Figure 111.   Bandwidth Error for P4 Code. 
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